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NATTIONAT, ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 394k

AN INTEGRAL SOLUTION TO THE FLAT-PLATE LAMINAR
BOUNDARY-LAYER FLOW EXISTING INSIDE AND AFTER EXPANSION
WAVES AND AFTER SHOCK WAVES MOVING INTO QUIESCENT FLUID

WITH PARTICULAR AFPLICATION TO THE
COMPLETE SHOCK-TUBE FLOW

By Robert L. Trimpi and Nathaniel B. Cohen
STMMARY

A solution to the unsteady two-dimensional laminar boundary-layer
flow inside centered expansion waves and behind both centered expansion
waves and shock waves 1s obtalned by utilizing an extension of the Kdrmén-
Pohlhausen method. The Prandtl unsteady-boundsry-leayer equetions are
integrated normal to the surface bounding the flow end are transformed
into a conical coordinate system. The resulting hyperbolic differential
equations are integrated in closed form for flow behind shock waves and
by numerical methods for the flow inside or following expansion waves.

An integral technique is applied st the discontinuities existing at the
trailing edge of the expansion fan and at contact discontinuities (entropy
discontinuities) so that the characteristic solution may proceed across
these discontinuities.

The solution to the two-dimensional unsteady leminar boundery layer
existing at all points in an air-air shock tube is obtained by this method.
A much shorter approximate method of solution is devised and is found to
agree favorsbly with this method. This epproximate method is used to
predict the flow in hydrogen-sir and helium-air shock tubes. TPlots of
wall heat-transfer rate and skin friction in eir-air, helium-sir, and
hydrogen-alr shock tubes are presented.

INTRODUCTION

Impetus to the study of time-dependent boundary layers has arisen
because of the increased importance of the flows initiated along the
ground and over buildings by the detonation of nuclear devices and of
the air flow over missiles in hypersonic flight. The time-dependent



2 NACA TN 394l

nature of the nuclear-shock-initiated flows is obvious; whereas hypersonic -
misslle flight presents two less obvious problems, one of which is direct B
end the other, indirect. The direct problem arises because of the time- :
wise varistlon of the differences between conditions of the outer potential

flow at the edge of the boundary leyer and of the missile skin as the mis-

slle encounters rapidly varying amblent conditions during its flight. To

date, because of the relative repidity with which the fluid boundary layer

is able to adjust to changes, the direct problem has been treated as &
quasi-steady one; that is, for given wall and local conditions at a time

in a time-dependent flow, the boundary layer is equivalent to that in a

steady flow for the same stream and wall conditions. The main spparent

difficulty in this approach is the prediction end simulation of the cor- -
rect wall condltions since they are in turn dependent on the time history

of the boundary layer.

The indirect problem arises from the use of shock tubes as a means _
of experimentally simulating the very high stagnatlon temperatures encoun-
tered in missile flight for purposes of obtaining data regarding heat _
transfer, skin friction, ionization, dissoclation, and so forth. Correct : -
interpretation of shock-tube test results requires a knowledge of the time- =
dependent flow inherent therein. The perfect-fluid flow in a conventionsl
(constant-area) shock tube is well known and is depicted in figure 1. At )
time t = Ot, the diaphragm which originslly separsated the high-pressure
or driver gas (state €) from the low-pressure gas (state ) is instan-
taneously destroyed and the resultant pressure inequality 1s adjusted by
the mechanism of: (1) a centered expansion wave or expansion fan (that
is, one which originates at a single point in distance and time) progressing
.into region € and isentropically accelerating the fluid to state ¢ ¥
following the wave; and (2) a shock wave progressing into region = eand
accelerating the fluid to state o behind it. (See fig. 1(c).) The
reglons §{ and o, composed of the fluld originally in regions € and o,
respectively, are separated theoretically by a contact surface (entropy
discontinuity) across which pressure and velocity are constant and the
temperature and density are generally different. Hypersonlc simulation
testing is usually done in region o where the stagnation temperature is
highest. The pressure ratlos across the expsnsion fan and shock wave &are
dependent only on the fluld in states € and «=. Detailed dlscussion on
the theoretical performance of the conventlonal shock tube, as well as
modifications such as inecreasing the area of the high-pressure chamber +to
increase the shock strength or adding a nozzle to obtain hypersonic flow,
may be found in references 1 to 6.

However, experiments have shown that, instead of regions o and
being reglons of constant pressure and velocity as predicted by inviscid
theory end as desired for testing, the outer inviseild flow in these regions
is time dependent; and furthermore, it is found that the shock wave attenu-
ates as it progresses down the tube. (See refs. 2 and 6 to 10.) These
variations are attributable both to imperfect-gas effects and to boundary- k
layer effects. Several investigations have been undertaken to predict the
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magnitude of the wall shear and heat transfer. In addition, attenuation
theories based on these wall effects have been advenced in references 6,
T, 9, and 11.

The laminar boundary-laeyer problems in region ¢ behind the shock
have been treated in references 6, 12, 13, and 14. Reference 6 first pre-
sented the solution to this flow by solving the boundary-layer problem,
in a coordinste system fixed to the moving shock wave, of a semi-infinite
treadmill (that is, the Blasius problem with nonzero wall velocity).
Solutions were obtained for the complete Prandtl boundary-layer equatlons
on an analog computer and for the Integrated momentum equation alone by
simple computations (which, unfortunately, contained & numerical error).
In references 12 and 13 the equations of reference 6 were solved to a
higher degree of accuracy on a digital computer and, in addition, velocity
and temperature profiles were determined. The momentum equation was also
solved in closed form by an integral method by using a fourth-order series
for the velocity profile. Another integral solution obtained by ueing
the Rayleigh velocity profile for the momentum equation and then applying
Crocco's relation between temperature and shear was used in reference 1k.
The wall shear and heat-transfer results of these references agree very
well.

The situation in regard to the laminar boundary layer for the flow
inside the expansion fan and in region ¢ has not been as favorable.
Prior to the concurrent studles of the present report and the companion
paper (ref. 15), the flow in these regions was handled by rather rough
approximaetions. In reference 7, the expansion wave was assumed to be
shrunk to zero thickness and region ¢ was allowed to exist from the
leading edge of the wave to the contact discontinuity. The unsteady
boundary lsyer was then assumed to be equal to that of a steady flow
which had the same free-stream values of velocity, density, end viscosity,
and which had traveled for the same time adjacent to a solid bounding sur-
face. References 11 and 13 also followed the procedure of shrinking the
fan to zero width but computed the boundery layer from the modified Blasius
(nonzero-wall-velocity) solutions. Both solutions result in conditions
physically unacceptable near the leading edge of the fan since they pre-
diect infinite wall shear and heat transfer at points where the velocity
and temperature potential approaches zero. It is also evident that serious
errors are introduced away from the leading edge for expansion-fan pressure
ratios not near unity because an appreciable region of varying pressure and
velocity has been replaced by a region of constant properties. Thus a cor-
rect solution to the boundary-layer problem outside of region ¢ is missing.
The f£illing of this gep and the determination of the boundary layer
throughout the shock tube by & common method was the primary purpose of
the present report. Corner effects arising at the juncture of two walls
or effects of opposite walls of the shock tube are neglected, and the
boundary layer is treated as a two-dimensional unsteady flow over an
infinite flat surface. The unqualified term "shock tube" will be used
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in the remainder of this report to designate a shock tube in which these
effects are considered to be negligible.

The theoretical investigation reported herein waes conducted at the
Langley gas dynamics leboratory. The time-dependent boundary-layer char-
acteristic system developed in this paper for conical potential flows
(eppropriate to shock tubes and nuclear shocks) 1s a special case of a
general characteristic system applicable 4o the study of any time-
dependent laminar boundsry-layer flow. )

SYMBOLS
Ap coefficients in dimensionless veloclty-profile power
series
a speed of sound
By coefficients in dimensionless local enthalpy-profile
power series : : o
b ratio of thicknesses of veloclty boundary leyer asnd
local enthalpy boundary layer in transformed
A
plane, =
Cn _ coefficlents in dimensionless total enthalpy-profile
power series —
Cy constant of proportlonality relating sbsolute viscosity
n T4 Ty 1/2 Ty + 8
to temperature, — —=[-— —_—
Hq T Tl Ty + S
c ratio of thicknesses of veloclty boundary layer and

total enthalpy boundery layer in trensformed
plane, f%

local skin-friction coefficient, L’ A

c
f 1 5
7 Pl

w
Ch local hest-transfer coefficient, 1
*
T Pwata
Pr



NACA TN 394k 5

Cp coefficlent of specific heat at constant pressure
Cv coefficient of specific heat at constant volume
D ive, O d 3
_— particle time derivative, =+ u =+ v
Dt 73t ox oy
EO’E:L'h., .

funetions of ¢
EE,EZH, L] - L]
f(&;ﬂ)

functions of &,7n defined in equations (E9)
g(&,n)
8qs8op5 = - ¢

functions of boundary-lesyer shape
g2H’83H’ .

ul
H totel enthalpy, h + =
H* total enthalpy difference, H - H,
T
h local enthalpy, f cp(T) 4T
o)
h¥* local enthalpy difference, h - hy
1 3
I= f 1-[2) | an
0 !

i,3 states on opposite sides of free-stream discontinuity
k thermal conductivity
L distance normasl to wall, L >> 8
1 distance free-stream particle has traversed since

accelerstion from zero velocity by moving wave



&?)

o>

u¥ = u - V¥
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Mach number

Prandtl number, EEE

integer denoting exponent in profile power series or
point in solution

arbitrary location of characteristic boundary condition

local pressure

hegt~transfer rate normal to free-stream direction,

kX
dy
.q_w,
local hest-transfer perameter,
21/ Ve
Pele |\ %

0yl
Reynolds number, —-
Vi
rate of streamwise growth of mixing region
recovery factor
Sutherliand constant for viscosity-temperature relation
state at shock wave
absolute temperature

time

velocity component along x-axis
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v*

Sn
v = £ gy

o Pe

7

velocity of free-stream discontinuity in x-direction

velocity component along y-axis

state st wall or bounding surfeace

coordinate parallel to surface bownding flow
coordinste normal to surface bounding flow

transformed normal coordinste for wvelocity profile,
i L/“y L 3y
A Jg Pe

transformed normal coordinste for local enthalpy

y
profile, L f id;y
V Jo Pe

local enthalpy shape paremeter, Bo

ratio of specific heats, ;E
v
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o}
E]=‘jp BP 4
0 Pe
& value of y at edge of boundary layer, largest value
of By, By, or B,
Og value of y at edge of total enthalpy boundary leyer
Oy _ value of y at edge of local enthalpy boundary layer
Bu value of y at edge of velocity boundary layer
(§E> slopes of positive and negative characteristics in
B/, £,t plane
(%) derivative along positive and negative character-
B¢/ +

isties in E&,t pla.ne,_ (_B__) + (gt’-) <3__>
ot 5 BE /., ot E

€ general reference state; for shock-tube case denotes
undisturbed high-pressure reglon

€ constant free-stream region behind expansion wave
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=]
e=f - L\E P gy
o( u1>ulpe

A velocity shape parameter, -2As
B ebsolute viscosity
v kinematic viscosity, E
. X
3 conical parameter, —
act
gte velue of £ at tralling edge of expansion wave
Eq value of & &t entropy discontinuity
§W*,§Z* values of E atilimits of forwerd integration along
characteristic lines for energy end momentum
equations
3 values of £ &t locatlon of Z-shock
o] density
c constant free-stream reglon behind shock wave
T shear stress, p _83
dy
~ Tw
Te local skin-friction parameter,

Ve
Pefe\| T
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X intervel in numerical integration procedure, E,.q - &j
¥ stream function
[}
v f B \u o gy
0 H¥/uy pg
Q total enthalpy shape parameter, Co
w transformed normal coordinate for total enthalpy
y
profile, I% -&-dy
0 Pg¢
L) quiescent state into which shock wave advances
1 local free-gtreem state

Subscripts not specifically designated otherwise denote evaluation
at the appropriate state or location. _

Superscripts or subscripts + or - denote waves moving in the
positive or negative x-direction.

A bar under a symbol denotes nondimensionalization by appropriate .

u

quentity in reference state ¢; that is, u; = El’ p = éL, and so forth.
(S - €

THEORY

DERIVATION OF GENERAL FORM OF THE REDUCED HYPERBOLIC

DIFFERENTTAL EQUATIONS

Discussion of Validity of Prendtl Boundery-Leyer Equations

Since all the theoretical equations employed to describe the boundary-
layer flow are based on the Prandtl boundary-layer assumptions, the valid-
ity of these assumptions must be considered further with regard to the
unsteady expansion-wave and shock-wave flows to be treated in this paper.
The point of origin of the wave (x = t = 0), representing, for exemple,
the burst of a shock-tube disphragm, is a singuler point and must be
excluded from the region of validity of the solution.
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The boundary leyer in the vicinity of the shock wave, since 1t repre-
sents a discontinuity in the outer flow, also mey be considered from a
coordinate system fixed to the wave itself (that is, the coordinate system
of refs. 6, 12, and 14). The problem is then equivalent to that of the
semi-infinite flat plate with a nonzero waell velocity in steady flow, the
leading edge of the plete esnalogous to the shock in unsteady flow being
a singularity. The Blasius-type solution for this problem is valid every-
where except very near this singularity. Thus, in the umsteady flow prob-
lem, the present solution, as well as those given in references 6 and 12,
is valld everywhere except very nesr the shock wave.

The ideal flow generated by centered expansion fans and shock waves
is conical in a distance-time sense; that is, it 1s a function only of
the ratio x/t. Consequently, such flows are easily handled in a §,t

X

coordinate system where £ = —y The accompanying sketch shows the
ae
significant values of & <for the shock-tube flow of figure i(e).
I L,
a'Gt 7 s d

Three regions in the expansion fan must be investigated with regard
to the validity of the Prandtl boundary-lsyer assumptions. The area near
the leading edge of the expansion fen represents a region of low velocity
that increases .from a value of zero at the leading edge (¢ = -1). This
situation appears analogous to that in the region near a stagnation point
in steady flow; the Prandtl boundary-layer equations are thus assumed, as
has been found in steady flow, to give results that are valld near the
leading edge of the expansion fan. For an expansion fan having a finite
ratio of leading-edge pressure to trailing-edge pressure, across the trailing
edge of the expansion fan there- is a discontinuity in the derivatives of
the theoretical inviscid flow. At this point the theoretical iInviscid-flow
derivatives change discontinuously from a finite value shead of the traliling
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edge to a zero value behind the trailing edge although the theoretical
inviscid flow itself is continuous. An analysis of the one-dimensionel
time-dependent equations of motion at such a discontinuity shows that the
viscosity and thermal-conductivity terms are smsll compared with the
inertia and energy terms; hence, laminar diffusion is negligible. Con-
sequently, it will be assumed that, although the Prandtl boundary-layer
equations are invelid across such a discontinuity where the second deriva-
tives are nonexistent or infinite, the equations are valid on each side of
the discontinuity. A matching procedure based on the conservation of momen-
tun and energy will then be used to bridge the tralling-edge discontinuity.

Reference 16 has shown in regard to slip flow that the discriminating
parameter, the square of the locel Mach number divided by the local Reynolds
number, 1is required to be of the order of unlty or lower for the theory of
continuous viscous flow to be valid. In the region of the fan where ¢

2 T pressure, density, and tempersture approach values of

approaches

zero (see appendix A), slip-flow conditions are encountered, and the
boundary-leyer assumptions are violated. The approximate values (based
on a perfect gas, 7y = l.4 and ag = 1,117 ft/sec) of this parameter for

various ratios of trailing-edge pressure to leading-edge pressure E%E
€

for values of p. of 1 atmosphere and 70 atmospheres are given in the

following table. .Also shown are the velues of ¢t and of the pressure
ratio across the shock in an air-sir shock tube corresponding to the

value of —EE
Pe
2
My vy
Pte e te : Shock-pressure
De for velues of p. of - g ratio
1 atmosphere|70 atmospheres
6.25 x 104 8.4 x 10°% | 1.2x 106 2.9 20
7.5x 106 | 1.5 x 1003 | 2.1x 1072 |3.9 30
~ 0 3.4 x 1001 | L.9x 1070 (k.7 40
~ 0 3.4 x 107 4.9 x 105  |5- i
My 2y
1 Y1l >
An inspection of the table shows that, based on the criteria T~ O(l)
1

for slip flow, the slip-flow regime occupies only a limited region for
extremely strong expanslon waves.
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Outline of Derivation Procedures

Since the development of the characteristic differential equations
governing the unsteady-flow boundary layer is rather lengthy, a brief
outline of the procedure followed will be presented before proceeding
with the detailed development. The principal steps are as follows:

(1) The Prandtl boundary-leyer equations with velocity and both
local and stegnation enthalpy as dependent variables are integrated in
the x,y,t system from y =0 to y =« to obtain integral partial
differential equations. These partial differentisl equations are then
transformed to a conicel coordinate system ¢,y,t.

(2) The wall enthalpy is assumed to be constant.

(3) The velocity and enthalpy profiles are expressed as a power
series in transformed normel ordinates a, B, and . Appropriate boundary
conditions at the wall and free stream are applied to these series. The

perameters %? =2 and so forth are evaluated in terms of A, I', Q, b,

¢, and arbitrary constants.

(4) Primery dependent variables Z, W, or Q are introduced and
the derivatives of A, T, Q, b, and c¢ are evaluated. Substitution
of these quentities into the partial differential equations results in
palrs of characteristic equetions for Z and W or Z and Q.

Derivation of Reduced Partial Differential Equations

The Prandtl boundary-leyer equations for the two-dimensionsl time-
dependent motion of a fluid over a flat plate are integrated over y in
the x,y,t system (coordinate system fixed to the surface of the plate).
The resulting partial differential equations obtained are then transformed
to a conical coordinste system ¢£,y,t. In this transformation it is
assumed that all the ocuter inviscid-flow functions are functions only of
the conical parameter ¢ = -3%;. This assumption is velid for an analysis

8,

€
of flows initiated by centered expansion waves or shock waves moving into
quiescent fluid.

The qualification was also introduced in the determination of the
final form of the equations that the nondimensional velocity and enthalpy
profiles could be expressed as a Pohlhausen power series in a suitable
variable which would be chosen to account for the density variastion through
the boundery layer.
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The following equations are the resultant reduced partisl differ-
entlal equations in the conical coordinate system. (See appendixes B
and C for details.) Because of their extreme length, they are written
in abbreviated form here and mesy be found in thelr entirety in appendix C
(eqs. (c11), (cik), (ci5), and (C16)).

d —
de° £ 5% of2 dup 5% t 92 ve P \o U1 e
B - ) e =y, ) f 2T FIENV L2 2
o u 6 uy dg & u ot u1\pe/ \da /A
(1)
2 a;
A L&\, (L, » b Obw & O g
3t wyy ¢ uy dt hy* 3t hy¥* 3t
5 q B*
R 7 AR S Tl B . SN (2)
$ uy ot W\Pe/ Npr,w\dp / V U hy ¥
o »
ek 2 w
?e_al__e__fﬁi+2923_‘-*_l_+,,.>+ﬁ_*c_éa_=2ﬁp_w N
ot U, 6 up dt 8 up ot U \Pe da /A
(3)
&
N B\, el b 3, e, ),
ot up ¥ Uy 4t Hy* ot Hy* ot
H*
ilﬁ=22i2 L B v, : (4)
¥ oy ot U \pe / NPr,w\ dw -

Equations (1) end (2) are the momentum and energy equations for wu;, hi,

6, and ¢ as dependent variables and equations (3) and (4) are for w,

Hy, 6, and V. The terms %-)-(- and, % are functions only of the parame-
*
ter A\; v end Y are functions of N, T, and b; and Q7 ana B are

¢ ¢ ¥ ¥
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functions of A, Q, and c. It should be noted that, although A = -2Ap
(similar to Pohlhausen), TI' and Q are defined as equivalent to By

and Co for the enthalpy power series.

Assumption of Constant Wall Enthalpy

The first step toward the simplification of this system of equetions
is concerned with the partial derivatives of hy or Hy with respect

to & and +t. If the solution is restricted to gas flows of short dura-
tlon over solid boundaries having high values of conductivity and of heat
capacity per unit volume, it mey be assumed that the wall temperature
departs only slightly from its initial value. (See ref. 13.) If this
slight departure is neglected and the wall temperature is assumed to be
constant, all derivatives of the wall enthalpy are zero and are eliminated
from the equations. This elimination is employed to obtain a solution and,
furthermore, for all cases except those in which an insulated wall was con-
sidered, it will be assumed that hy = Hy = he.

Note should be taken of the fact thet, as £ approaches in

vy -1
the fan, all derivetives with respect to E of the outer flow also
approach zero; thus, there is the possibility in this case that the wall

derivative of enthalpy would be significant. As E approaches

2
7 -1
however, the boundary condition of zero £luid wveloclty at the wall is
also violated as the slip-flow region is encountered and, since the equa-
tions and boundsry conditions themselves ere no longer valid in this
region, the lack of consideration of the wall enthalpy derivative is not
consldered to be significant.

Introduction of Power~Series Profiles for
Velocity and Enthalpy

A transformation to a nondimensional "incompressible" ordinate normal
to the surface is next intrgduced to eliminste the density terms arising
in the integrals for %? %Ky = %;, and so forth. A power series in
this nondimensional ordinate 1s to be used to define the velocity and
enthalpy profiles. Since boundary conditions gpplicable at infinity in
the physical plane are to be applied at a finite distance in the trans-
formed (incompressible) plane, the assumption is mede that at a finite
distance % in the physical plane the boundary conditions at infinity
also apply. This distance 3 1s the conventional boundary-layer thick-
ness of either the velocity or enthalpy boundary layers. The nondimen-
sional ordinates for velocity, locel enthalpy, end total enthalpy are «,
B, and « which are defined by the following relations:
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1 Ve
A Jpo P
’ (5)
0 Pe )
\
Y
=1 /7 e
B V_/; pedy
? (6)
on o
v [T e
0 Pe J
\
lfyp
W= = —_—
O Jo re
Y (7
D—fsﬁpdy
0 Pe J

In equations (5) to (7) the values of & are not necessarily equal
and, in fact, for the method of solution of this paper they are allowed
to vary arbitrarily. An slternate procedure, often employed in steady
flow, requires the various 8 values to be equal; such a procedure appears
to be unduly restrictive and, consequently, is rejected. Thus in the pres-
ent analysis, the ratio of the 8 wvalues is one of the results of the
solution and not one of the boundary conditions enforced. Kalikhman
(ref. 17) was one of the first to adopt this procedure for &, and Bp.

The expansion serles for the various nondimensional profiles are now
assumed to be represented adequately by either a flve- or six-term series
as shown in the following relations:

ﬁi = Ag + Ajo + Agae + A3a; ; A#a& + A5d§ (8)

h'hw=h*=Bo+Bl;3+32(32+B5B3+34;51‘+B555 (9)

hy - hy ¥
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H - HW H*
B - B H*

= Cp + C10 + Cpu? + Cxad + Cpatt + s (10)

The boundary conditions to be satisfied for the velocity profile are
as follows:

Five-term series:

A5 = 0 (11)
For o= 0,
u
o 0 (12)
end for o= 1,
—=1 (13)
W
—==0 (1k
= )
a& =
1 _ Constant (zero except for one special case) (15)
2
do

For a=0,

Du
a<p a_) T (16)
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Six-term series:

For o= 0,

u
e 0 (17)
and for o= 1,
u
_—= 1 (18)
b
u
T (19)
— =0 19
do, - .
2 u
d ey -
= 0 (20)
A
a3 —
= = Constant (and leter determined to be zero) (21)
da? '
For o= 0,
! d Du
oy dy ox .= Dt
W

Similer boundary conditions are to be satisfied for the enthalpy
profiles with appropriate energy equations in place of equations (16)
and (22). The resson for the assumption of a constant value (which may
be other than zera) for the highest derivative of velocity or enthalpy
at the outer edge of the boundary layer is discussed In the consildera-
tion of the solublon at the leading edge of the expansion fan.

The system of equations (11) to (15) or (17) to (21) may be solved
to yleld all the A wvalues in terms of Ap. .and the constant of equa-

tion (15) or (21). (See eppendix D.) The term Ap may, in turn, be
expressed by an evaluation of equation (16) as follows:
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dy =
oy 2|3 ) () 3 3% " (23)
1 bt Byuay lByWBa,p'By da
W a=0
But
S _1lp (24)
oy Apg
and
L 4 (25)
Pty

(for a given value of x,t from the assumption of the Chepman-Rubesin
viscosity-temperature relation (ref. 18). A combination of equations (23),
(24), and (25) results in

321 2

128 _eeera Dame/nf o2 (26)
2 by Py U1 Dt p\8 ) Ve

da

a=0

Evaluating the left-hand side of equstion (26) by differentieting
equation (8) and evaluating the right-hand side by substituting the rela-

tion for ];lti (eq. (C6)) and the definition of ¢ yields

Pe P1 e Uy - £ dup /n\2 2
A= - T mm— emm —— = (27)
Py Py My Wy dE \8 Vet
A similar procedure for evaluating the energy equations (eqs. (BY4)
and (B5)) at the wall yields:
g 21
Np.. L e
P=Bp= -t 2 2222, de A (28)

2 h¥ 2 u
b 1 ( 1
U - E)pguyp —

1 lldg
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2 N g._dpl
1Y% Pr
Q=0Cp=—= (1 - NPr)Af + a A (29)
c2 2H,¥ du
L (E]_ = g)plul _':'L‘
dg
o«
The integrals required by the definitions of 8 =\/P 21 - li-Jl-dy,
o " uy/Pe

©

o* =\jﬂ 1 - 2 il-dy, and so forth are evaluated in eppendix D and the
0 W /Pe

various relatione for the shape parameters are expressed in the following

form:

6 _ ©

2~ &M
¥ 5%
== 7N

Transformation of Equations to Reduced Hyperbolic Form

New dependent varisbles, Z, W, and §, are now introduced in
recognition of the fact that, in laminar-diffusion problems, the dif-
fusion distance (boundary-leyer thickmess) is proportionasl to the square
root of the product of the kinematic viscosity and the time since dif-
fusion began. These primary dependent variables are defined as follows:
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7(t,5) = oo (51a)
vet
_ ¢
W(E,t) = v (31b)
Q(g,t) = ¥ (31c)

Substitution of equations (31) into equations (1) to (4) results in
the following sets of simultanecus equations:

a &% o
1 2] oA oA 1 8%, 032 2 VwfPw )
=1 - —_— o == = —_— Aq ~ 2
Y dA Hbt) g(éﬁ)jl * W 6 Ot wy v p€> 1A (52)

du dh 4
(--E_V.“_*>+QWL%*+1 51, 1 1__1 1

up A& By¥ 4 pyby GF

e/ %1 1 dh\ex ¢ 3 %1 ) sxy
P ¢ .

vleiby A m*

. 2
2 1fa =

ga_b> +_1_Y.*_t(é‘i>=3_"_wp_w g1 =10l MHTE) o
Ot u ¢ 3t Uy ve\p v {Npy. b h*Jo \ da

€
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w2 g 10% A
a: - =+ H = -MNM¥===
fy &\, e 1B, (m-8) 7 5 cTs|,
o U, 6 2up 6wy df Uy u, 2
Y
a 8% 3 2 :
1 8 =2 A 1 &% _[dZ 2 VyPw 9
= —|% - = =2 2= = [ g~ 4
g 53\[(&-> g(&)l?-’.ule <3t> Ll Ve<pe> ta ()
d &
3qf | & 8%\, pq) L o, 1 1 % e/ 1 19
ot u, 6 2uy ¥ up dE Hy* ag Uy u12 py df
T2
U.12
S O S O SN B2\ P i
Hy* de |y wHy*\T dt w2eLd | AV
Ry
2
- ép >y & .
1 2 i lcgg.pi__llf_t.l\. _g.a_7\ + -- P
uyHq * w2 PL d¢  AV¥ up ON| \ot ot
H - —
2
%
la\]!taﬂ_gla_ﬂ +.l___a¢ ?.E-géi +
)

Vi, fo, \© C . |
1ok f20) 2 Fefu) Gy (9
u v \dt U ve\Pe / Npp
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The partial derivatives of A, T, b, Q, and ¢ may be eliminated
in the following mamner: Equations (27), (28), and (29) may be expressed
in the functional form: '

2
A, 1) = Bo(e) (§) 7(E,t) (36a)

Eqy(€) A12(7\) + Eop(E) A

b2k, )

r(g,t) (36D)

Eip(e) A18(N) + Epg(g) A
c2(t,t)

a(e,t) (36c)

where the E terms are functions of £ =alone, whereas the terms Ay

and % are functions of A only.

Since the derivatives are to be expressed in terms of the derivatives
of the primary dependent variables, Z, W, and @, another equation
relating these quantities 1s required for each pair. The relevant equa-

tions are the identitiles
2
= f
v
R CYS (37a)

z2_ &
Wooge ¢)2
= (s
82 V2
§=E=£}ic‘2 (370)
2

Ol <«

(&)

<
m
ct
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Differentiation of equation (36a) immediately gives the values for

the partial derivatives of A:

(a_%) =Aiﬁ+z<.a_z>
agt g1 |Eq 4t zag,JC

ot Z\dt
e &2 £

and
7\c1% dloge%
g1 =1l+2=—=1+2 ——=
0 da d logg, A
A

(38e)

(38b)

(39)

Differentiation of equations (36b), (36c), (37a), and (37b) and
solution of the resultant two simultaneous equations employing the expres-

OA
dt
tives of T and b (or Q and c).

sions above for

and %l give the following relations for the deriva-
3

The equations are written for T

and b but are also applicable for Q and c¢ by everywhere substituting
the equivalent functional form of the H-system for that of the h-systenm

(that is, Q@ for T', ¢ for b, O¥% for W,

d loge g

Big for Ejip, &om

v

for gop, Z for Z, Q for W, and so forth).

<ar> T 1<Bw> L T2 /az) Y 0 loge 5

St/ =z w\de St 2 S3hi~ ~

k) Boy, WO/ &y & Z\3E)|TD 3 log, b
T l_al"geg DA [y 2%y
8op éh d logg b 8180 b2 —3h d logg b

S logeg 1
o loge A Eg ae

d loge

-1 +

0 logs A

d loge %

d logg A

(L40e)
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g g
?z) _rafw\, n o afe\a 28] OEyg
3/, o, WL/ &gy 8,7\0t /| pp2 3 3 loge b d loge A
(kob)
B_b) /) DV T - - S, a_“ge_%ma_fﬁ .
ot/ 2gon W\OE/ 28, 812\t b2 d log, T’ d loge A
b6alogev [7\ Blogeg d.logeA
g5 O logg T gngh\{bE &3n d loge T 4 logg A
9 log 4w
e vl1 o (41e)
d loge A/Eg dg
.a_b. =.._l—_aw +_b_._]_'_.a_Z_ l+g_7_\_g a_.].-_cjie__%q.gi_]ﬁ_%
3t/, 285, W\Ot) 284, 87Z\0t 2 13 logg '~ O logg A
(k1b)

where
N

9 log, g d log, é
gzh = - + 2
d logg b d logg T

> (42)
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2 |

aA ) -

gzp = Ep El' + Eop (43)
1 dEyp |, GEop

gn = 3\M° 5t (44)

Tb

Elimination of the derivatives of the secondary dependent variasbles pro-
duces the final form of the differential equations.

For local enthalpy:

5%\
d loge — d loge —
_l.e__é_]_.;.g__.._._A- .a_Z. + 1+2__._A.taz + 2 ;.'.
5% g d loge A 3 " d loge A /gy ot : 2

* a Toge O~
e Bof MFave a)l 1 Q7T log Byl
ae | &% uy L bV ¥ gy d log, A 4 logg &
Yy [P 2 0 o
o YufPu\ , 8 8 n
VGQ)€> 12 5% (45)

“‘*h 3 '_ 2 .l fom) _,foz 1, u % W mig g g B
LR R SRR T

frmet) senly ()

3 logg b gld.loseil-l‘vzﬂ: 3 log, b

AVE g dlogg A dloggt 8y O logy I

Lcdpl dhl)bb*v Blng,leog,Bo ia:.og,%’i

zamg,%-aalos,g a:.os,—g.- alos,g ldlogeEO/ a:.og,ﬁalag,9-+alogev -
dloge A 3 loge A gaha:.og,b 6halog,r sld.logeg\{-bZ 83 3 Toge I & Togg A | Togg

e 0 o

w—
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For total enthalpy:

.dlog 5% d log. o

e A e

gli-il+2——A<a—Z)+l+2——At<aZ>+
t 3

% gy d loge A ot d loge N /g \Ot
u12 T % » 10O%¥ A
Ji,, m-t TR T c T e
= = -
2 dt uy o u12 3]
) - —
2
22 2 .
ldlogeedlogeEoz o JHPW) 5 88 (47)
g1 4 loge N 4 logg & Ve \Pe lAS*
- & %
v _ Sug )\ faQ R) 2 _ gjfz\ . fa L. o By P& ¢ dB oy dE
Q}D* g )(ag)t Smt(at)g g Z[g(ag)t t@t)g]+22+c\: Hl* d;)u*"' uf Hl*d'; +Hl*gldl
1- 5
2 w2 juud ¥
2 g\ g 1 T2 g ep 10 TFolwen 3 dlEy | ( “‘eﬁ>+
2Pl | AT EF WPl % ADF & Slogo h 1106 §  8pg 2 WEen B6E\" ~ S Togs c
EI-T Hl-T
1 d 106 Bo| 3 1_aloseé+2dloge%-zalog,§ _Laloge;:_—"; alos.,§+
sldlogeencaﬂl d1ogg d logg A d loge A szﬁalogecLSSEalosen
4 loge A alosei d'lose ahge! wa2°1
%rmgro'(;zsmamn TTe Rt STaen =2;C:) T BioF e
where
d loge %-* d loge %*
gihh=1+2 - (49)

o loge T O loge b
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O loge %ﬁ 1 9 loge % d loge g— d loge’ g
8sp = + g\l - ——— -2 ——Y 1] 4
d logg A €2h 0 log, I' I'b2 3 logg b 3 loge A
d loge %; . d loge ¢ 9 loge ¢
1 A v £ 2 v (50)

1+ 8=y,
28,y O logg b b2 P log, . 3 logg A

Equations (45) and (46) and equations (47) and (48) are sets of
hyperbolic differential equations for which real characteristics exist.
The slopes of the characteristic curves are given by the following
expressions:

5%
d loge Z
14+ 2 — —— %
(8_’0) ) d logg A (51)
B¢/ %
5 d log, =
Mgl |\l ——
5 d loge A
&), '
+
Y1 5 82n - gyné
for the h-method; and
: gyt
(E—E) - M (52b)
¥
* U1 oy Bop - Eupt .

for the H-method.
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The flow field in the ¢&,t plane is confined to the region

- u, u
by = = SESE =2 (0 <t <)
8¢ B¢

where the waves initiating the flow have velocities ug~ and ugt.

Subsequently, it will be shown that the boundary conditions are specified
only along & = &g~ and & = to7; thus, integration along the character-
igstic l1lines must originate at one or the other of these values of E.
Furthermore, as the Integration progresses, even though no boundary con-
dition is specified at t =0 or o, time must be increasing for the
mathematical solution to be compatible with the physical one in that an
event preceding another in time mey influence the latter but not vice-
versa. Thus, the requirement

5t = (ﬂ>5g >0
ot

determines the limiting value of ¢ at which (in the absence of dis-
continuities) the integration from £ = g~ or & = EgT must stop. If

this limiting value of & is denoted by E¥, gg (from eqs. (51) and (52a)

or (52b)) changes sign at values of E¥ given by

-1
*
2 Losg -

g_-x- = gZ* = uq Si*. g1 1+ 2 —_d. loge N (53)

¥ = g¥ =y g (5ha)

-1
81,8

or

g =t =1y g*— ggﬂghﬂ‘l (54b)
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These values also denote the vanishing of the coefficient of the

dZ
term gg or SE in the differential equations. Singular behavior of

the solution of a differentisl equation at any point where the coeffi-
cient of the leading derivative in the differential equation vanishes
is a common methematical phenomenon.

METHOD OF SOLUTFION FOR THE REDUCED HYPERBOLIC

DIFFERENTIAL EQUATIONS

Statement of Problem
The solution of the unsteady boundery-layer equations has been
reduced to the problem outlined below. (The h-system elone will be dis-
cussed, since the H-system is in general similar to it. Where major dif-
ferences between the two systems arise, these will be noted.)
If the following five equations are given:
(1) Pirst differential equation for 2z (eq. (45))

(2) Second differential equation for W (eq. (46))
(3) A = A[e,2(8,)] (eq. (362))

(4) T = T(\,b,8) (eq. (36b))

(5) 2825 _ Zen p 2y (eq. (37a))
w(gt) w

determine the five dependent varisbles Z, W, A, T', and b. The
solutions to this set of equations with appropriate boundery conditions
for the cases of constant free-stream flow end of a free-stream flow
varying in a menner prescribed by a centered expansion weve are treated

in subsequent sections.

Method for Centered Expansion Fan

Solution of the problem at the leading edge.- The determination of
the critical values of AN and Z at the leading edge of the expansion
fan (¢ = -1) mey be achieved by consideration of only two (egs. (36a)
and (45)) of the five equations listed previously. The elimination of
the other equations arises from the fact that, at £ = -1, the flow is
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essentially incompressible (Ml approaches 0); thus, the momentum equa-

tion is divorced from the energy equation.

Consider first the equation for A with Ey expressed in terms

of £ by using the fact that Ty = Te¢ and py; = pe:
371
/ 7+ 1 7-1
2
yN—" 2 (g) (55)

1 -
+§\l_7 1,
>

If the boundary condition is stipulated that A be finite st & = -1,
it is evident from equation (55) that the following relations must hold at

£ = -1:

z(-1,t) = 0 (56e)

8.
*leec1 =-1

since i(l +E)=0 and 3 denotes the charecteristic derivative;
<4

that is,
5 ) d\ /5t
— = — + ——— —
&) -6 &6 £
+ +
Now the momentum equation at & = ~1 reduces to
5% o%
11+2dlogeA<SZ>+2ifEJ; F °<dl°geE°> Z =
&1 d logs N /\BE/_ uy 4 g1 4 loge AN \d logg & £=-1
6 ©
A 8
24 % =% (58)
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since. the ratio
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Equation (58) may be reduced through further limiting snd combining

processes to

- <
d lo —
Al oo P Aoz, ,
g d log, N J\BE/_ dag <
2= o o
= oA 2 2
y - 1 1 A *
1.

or

and finelly to

*
d loge —
1,48 <8_Z> ot

okl
d 1 S
>- o C8e 7 Z

_)'adlogex 1+ &

(59)
o
2 ‘?‘logerz> o op 80
B b
gy & log, N \BE/_ AD
2 A
_> - (60)



NACA TN 39LL 33

Equating the values of (2?) at & = -1 from equations (56b) and (60)

yields

or

(61)

2 A
)\:-—-A—
5 e

The initiel value of A at & = -1 for all t must satisfy equation (61)

regerdless of the values of I’ and b. l

If a five-term velocity profile is assumed, substitution of the ,

* .
values of A and %; in terms of A into equation (61) determines

the equality

2 .
L+ -1—7+i-i 7\+-]-'12+-1}- =0 (62)
120 90  Lol\uy 9 uq
a=1 a=1l
1] d_2 ui
For A to be real, the value of [ = L must be such that
o=l a=1
2

= A I 12+ (=) |20 (63)
90  Lkojuy 1,080 Uy
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or
ne "

<.Ll_> - 21.037<l> - 14.025 2 0 (63a) .
uy

vl

"
The minimum absolute velue for [ is found (by using the equal
vy
sign in eq. (63a)) to be -0.647. A minimum value is desired since the
velocity should spproach the stream velocity asymptotically at the edge
1
of the boundary layer. When this value of C&L) is used with equa-
1
a=1

tion (62), the starting value of A i1s found to be 12.3.

If this sequence is duplicated for the six-term velocity profile,
the corresponding equations are:

2 . ny "

A 1 1l /u 1 1l/u
_—- s == A+ =10 - =f— =0 n
250 |6 " 2’-I-O<ul> i 6<ul> (65)
nt 2 "t *
1,1/ S oo\ | 2o (65)
6 2Lo\uy 1,440 6\uy
or me 1
2\ . 22MmY >o (652)
! 5\
1ne
The minimum value is (%L> = 0, and the corresponding value for A
1

is 20.

When the energy equation was considered, the following equalities
were employed at the leading edge:

(a) For the characteristic slopes (see eqs. (51) and (52a)):
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§E> i S (66)
8¢/, \8E%/_ 3

(b) For the characteristic derivatives:
o) _2,(et) 2.2, (et) 2 _ (s
<8§>+ TE” (ﬁé)+ 3% 3 <6§)- 3 <6§>_ (67e)

(c) For the Z-derivatives:

3% oz
22y = 22 6
<;€>¢ 2 (670)
since G-Z-> is zero.
B’G §=-l
Since
2
W= _za_Gézﬁ
VvV b

(eq. (378.)) and Z = 0, 1t is necessary for W= 0 to keep b finite.
The assumption of a finite b 1is a physically plausible restriction
since it implies a finite ratio of the thermal thickness to the velocity
thickness in the physlcal plane. The dominant terms in the energy equa-
tion et & = -1 are:
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d loge ~
g_heg<§z> Poon W Z) P R e O D
gn \0t/, &1 Z \3&/, hi*¥ d¢ g d loge € |O loge A
9 loge 7 d logeg d loge% d 1ogeg
- —— |+ 2 -2
8op O loge ' |12 &3n d loge b d loge A o loge A ¥
d log Blogg d loge & Blogﬁ 2
1 e'a-/ ev .eA+ eV =22 ZBL
&op, O log, b \{,be 83h S Tog, T ~ @ log, A O log, A V) V¥ Npp
(68)

Substltution of the values elready known at & = -1 and employment of
IL'Hospital®s rule yields

W 2 2 v B
lim( ) - _<ﬁ> B (69)
£>-1 \OF 3\, v* NPr
But

(70)

2
2 2
lm(g) = 1lim b2<9> LUNSN-74:)

B 3
since (8—§->+ = (-S—E-)- gt € = -1, and

and

2 2
852 2] 2 6 A
lim = —_— = - - —
E>-1 <8§ ) A (A) 3 Al (A) 5%
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Furthermore, in the limit & — -1, equation (28) reduces to

A Npr  ApNpr
b b2
Combinstion of the preceding four equations gives
v
By — = -7 (72)

v*

This equation is identical in form to equation (61),

gince the relations between — and = are identical when T 1is
replaced by Ap.

Therefore, the initiel soclutions for the energy equation are identical
to those for the momentum equation when Az 1is repleced by TI'; that is,

For five-term series:

(73)
I’ = Ba = —6.1
For six-term series:
A= 20
(T4)
I' = -10

From equation (71) it is evident that the initial value of b 1is equal
to the square root of the Prandtl number for all cases.
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A like treatment of the total enthalpy method would result in initisl
velues of Q@ =T and b= c. This result is expected because, at ¢ = -1,
My = O; thus,

lim Hl* = lim hy¥
-l £l

Solution inside the expansion wave.- It has been proven that 2Z, W,
A, T, and b are constant et £ = -1 for all values of +; that is,

(é&) =0 and <§E> = 0. A solution having these same properties
ot/¢=-1 Ot /e=-1

of inverisnce with + at constant & will be employed for the flow away
from the leading edge. Justification for this assumption i1s based on the
similarity found in the complete Prandtl boundary-layer equations derived
in sppendix E. (See salso ref. 15.) In the following paragraphs, it will
be shown that, since the outer inviscid flow is a function only of &,
then the boundary-layer profile form factors A, T', and b, as well as
the primary dependent variables, Z and W, are functions only of the
conical parameter §£.

First, consider any unsteady two-dimensional compressible flow over
a flat surfece such that the outer potential flow is conical in the sense

thet 1t is & function only of the conical coordinate & = ax—t If e
€
f Ve
dimensionless persmeter 1y 1is defined as 1 = Y0 Pe  gng the Prandtl

boundary-leyer equetions are transformed from the x,y,t system to the
£,M,t system, the following results are obtained. (This transformation is
carried out in sppendix E.) Both the boundery-layer differential equa-
tions (egs. (E1l) and (E1l2)) and the boundary conditions (eq. (E13))
become explicitly independent of the time + provided that the wall
temperature is a function of E only. Consequently, the solutions to

the differential equations must also be independent of t in the ¢§,q,t
gystem; the parameters § and rn are similarity parameters; and the
solutions msy be classed as similar. The velocity and static enthalpy
profiles are then functions of only § and q:

u(t,n,b) _ LG_&) _ o%(e,m) _ ultyn) (75)
8¢ ac \OY %, on 8¢
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i Myt) = ’ =M 6
Z(én) g(&,m) e ('76)

A combination of these two equations shows the stagnation enthalpy profile
to be also of the same type; that is,

n 4 B2
H(E,n,t) _ 2 _ H(E,m) (77)
B B K |

Consider the velocity profile of the integral method (eq. 8) which may
be written in the functional form:

n
a(en) _
SHL-) @ (78)

n=0

The o variasble is eliminated from equation (78) by expressing o as

a function of 7 and A. (The required expression 1s an immediste con-
sequence of the definitions of o and 1.)

Equation (78) then reduces
to
n % n/ 2
v
‘%LZ n(N) —%—) n® (78e)
1 n=0 -
Equation (%6a) is of the functiocnal form:
A= Eo(t) & (19)
vet

Substitution of equstion (79) into the velocity-profile equation (78a)
yields

o E (&) n/2
u(ﬁ:n) - An(7\) 0 T]n (80)
ug (&) L A "
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According to equation (80), the velocity profiles of the integral
method are functions of &, 1, and A, whereas equation (75) shows the
exact profile to be a function of only & and n. Consequently, in
order to make the integral-method differential equations compatible with
the exact differentlal equations, the boundary-layer profiles applicable
to both sets of equations must exhibit the same similarity in respect
to €& eand n. Thus, it is necessary that

A= k(é:ﬂ)

Finally, since A is the velocity form factor at an arbitrary value
of x and t (or ¢ eand t) and is independent of y, it is then nec-
essary that A ¥ K(q). Consequently, the following conclusion is reached:

7\(g,v'f]) = k(g)

and

2 2 2
AE) Eo(s)[ (7\)] (vet> Eo(€) [—(7\)] Z (81)

Since all the terms of equation (81l) except the last one are known to
be functions of & elone, it follows that the last term must also be a
function of & only; that is,

— = 2 = 7(8)

(-a-> =0 > (82)
dt E

(é_Z.) _ & _ <§Z.>
Bg 5 dae te13 +

In en analogous menner it may be shown that W= W(g), T = I'(t),
and b = b(t) for the integral-method differential equation to exhibit
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the same type of similarity as the complete differential equation.

Consequently, the solution employing éé = éE = él = QE =
atg atg atg atg

db
<S— = 0 1is Jjustified for the conical expansion-fan flow region. Simi-
t
g
larly, it may be shown that the stegnation enthalpy variables Q, @,
and ¢ are functlons only of the conical coordinate E.

Whether to employ five- or six-term power-series profiles and whether
to use static or stagnation enthalpy methods was next determined. The
reasoning leading to the conclusion to use the six-~term profiles with
the stetlc enthalpy as a variasble was as follows: Use of & five-term

1t * 1
profile necessitates the specification of <%i> and <§—;> as
U1/ =1 17/g=1

negative at the edge of the boundary layer in order to satisfy the initial
conditions. Any profiles resulting therefrom, regardless of the variation
of the outer flow, must be limited unduly by the restriction:

lim 2 < 1.0
asl Y1

h*
lim 2 < 1.0
psl bp*

Consequently, the five-term profiles were eliminated for use lnside the
expansion wave. Numerical integration of any differential equation is
difficult when the Integrand becomes improper. In the integral method,
nondimensionalization was accomplished through division by Uy, hl*,

or Hj¥. Consequently, when these quantities become zero, the integrand
becomes improper. In the expansion fan, these singuler points occur at
the following locations:

At E = -1

ul=0
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At g = -1

and st g = 11

Hy* = 0

The singularities at & = -1 may be easily handled analyticelly.
(See previous section.) However, the singularity in Hi* at £=1
would occur in the middle of a numerical or graphical procedure and would
present a possible source of difficulty. For this reason, the static
enthalpy system was chosen for the solution in spite of the fact that the
stagnation enthelpy method has been more genherally used in steady flow.

Although a graphical-isocline technique could have been employedL
the following numerical method appeared to be more adventageous in regard

to both time and accuracy. First, two additional wariables E% and gg
)

were introduced eand the required two auxiliary equations were obtalned
by assuming a Taylor expansion for Z or W in the nelghborhood of the
point E&p; that is,

T
Tpi1 = Tn t W'+ Kogt £ X gm XAV X0 pv L (g)
2 6 ol 120

where the plus and minus signs indicate values ahead of or behind the
nth point, X is the interval between adjacent points, and the super-
scripts on the Z +terms express total derivetives with respect to §.

Differentiating equation (83) with respect to ¢ yields

2 3 L 5
oo taxg e g m Xy X ovye X vl (8
Zny) = Zn T3 6 +2l; 120 ¥ (84)

Multiplication of equetion (84) (positive signs) by g and subtracting

the result from equation (83) (positive signs) give an equation applicable
to the starting problem (that is, when the velues are known only at one
previous point):
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2
Zﬁ+1=§(zn+1-zn)-zn'+x—é-zn"'+- .. (85)

Subtraction of equation (83) (alternating signs) from equation (83)
(positive signs) and addition of equation (84) (positive signs) to equa-
tion (84) (alternating signs) yield

Toed - Tl = X' + TR 4 = 0m 4 (86)
B + By = 2t 4PN e T (87)

The term Z,"™ may be eliminsted from equations (86) and (87) to yield
? 1 1 1
Zpiq = i-(zm_l - Zn_l> - (lpzn + Zn-1> + P ><l‘znv Foeo. . (88)

which is applicable when the values are known at two previous points.

Equation (88) is a form of Milne's equation (ref. 19) but has been
derived in a different manner to show its natural compatibility with and
extension to equation (85). Equation (85) (end its W counterpart), the
third derivetive being neglected, was employed to evaluaste the first point
away from the leading edge of the fan and thereafter equation (88), the
fifth derlvative being neglected, was used.

The best sequence of computational steps found for obtaining the
golution at the n + 1 point from the nth point was determined to be:

(1) Estimate Agy3 = Mg + XAn'; Ap' obtained from equation (38e)

(2) Solve equation (27) for Zpsi
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(3) Solve equation (85) or (88) for Zhel = <§%>
ot n+l

(4) Solve equation (45) for bp,; by trial end error until the

value of <§§> obtained equals that obtained in step 3
n+l

(5) Compute Wp.] from equetion (37a)

(6) Solve equation corresponding to equation (85) or (88) for
1 oW
Wni1 = (g;)
n+l

(7) Solve equation (46) for Wp,, = (éﬂ)

ot n+l
(8) Compare values of <§E> from steps 6 and 7 and repeat pro-
314
n+l

cedure with new value of M7 until the two values of (2%)
n+l

are in agreement.

Values of the interval X were selected as follows:

X = 0.02 (-1 £ ¢ S -0.90)

X = 0.0h . (-0.88 5 ¢ £ -0.8)

X = 0.10 (-0.70 £ & S 1.00)
The smaller values bf X were used near § = -1 because of the

strong curvature of the functions A, b, and I' when plotted sgainst E.
These functions all had infinite slopes at & = -1 (1t may be shown

that %% « (1 + g)'llz in the region where §E approaches -1.0) whereas Z

and W had finite slopes with small second derivatives.

-

.
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Methods for Regions of Constant
Outer Inviscid Flow

Simplification of the reduced hyperbolic differential equations for
special case of constant outer flow.- The general reduced hyperbolic dif-
ferential equations of motion and energy in the conical §&,t coordinate
system are greatly simplified for regions of constant free-stream velocity,
pressure, density, viscosity, and so forth.

Equations (36a), (36b), (37a), (45), end (46) represent the final
form of the most genersl set of equations in E,t coordinates in terms
of local enthalpy; corresponding stagnation enthalpy equations are (36a),
(36c), (37b), (47), and (48). For the special case of constant outer
flow these equatlons may be written 1n the followling form:

For local enthalpy:

A=0 (89a)
Npp By o _
Peo—2 1 721422 (89p)
2 ¥ 2

)2
zZ_ QA 2 (90)
W

2
w2 e\ (28] 4 4[B) pzaa E[CE) , 88 (91)
> )\8y), e, velpe) T o* A

2 d —
=aﬁ<p_w> g%31-7‘1u2h€ 1t 4 (92)
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For stegnation enthalpy:

NACA TN 394k

(93a)

@ - Npr)ay® (930)

Z _ ;A: 2 1
c 9

v 8um \[3q &ug aQ>
— ot rmt— | m— — t — - l -
(1_—!-_']_ D* ng §><B§>t N ng <Bt g

o\ Oy v
Ve \Pe Np, O %

The following additional relations
8ll free-stream quantities are constant
the preceding equations:

g1 =1
1
85h = EQ_ -
_ 1
85H— E(l -
86n = &6m =

v 2
-2 YRH) 2 2 (95)
Ve \Pe A B¥%
?&E .Q.’. §.<§E> - t(az) + Q
gom/Z |\t /i 3t/
(96)

stem from the requirement that
end have been incorporasted in

)
82/ | (97)




NACA TN 39kl L7

The momentum differentisl equations (91) and (95) in both systems
are identical and are independent of the corresponding energy differential
equations for the case of constant outer flow. In subsequent derivations
for this case, the equations in terms of local and stagnation enthalpy
will be carried simultaneously.

The slopes of the characteristic curves are:

For equations (91) and (95):

5t t
(g)_ = ————u 5 (98)

For equation (92):

(§> = L (99)
8¢/, ¢ &on :

For equation (96):

<§> = kd (100)
8L/, ¥ 82H

Uy — — -

o% g

If the characteristic derivative notation of equation (57) is used, the
differentisl equation (91) or (95) may be rewritten to yield

2
vy (0 5 ©
o _‘i(_E) n el
Ve \P 03
8z) % cve A% (101)
Sg 5t _9_ - E, u .i - §
- =1 5% =1

%

Since WA, %, and -%_— as well as the free-stream flow quantities are

all constant, this equation may be integrated in closed form along a
line of slope (%> . After the general boundery condition that Z = Zg
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at & = £y 1s applied, the result is

E -¢& E~ - &
s > *0 | -0 - (102)

) 0
21w o B fo

As yet, no restrictions have been made regarding the dependence of 2Z
upon t. Thus, in theory, 2, may be a function of +t, and the energy

equations may be developed accordingly. However, since the constant-
outer-flow case 1s only a speciel case of the general conical-flow cease
discussed previously, the same arguments mey be epplied to show that Z,
W, Q A, T, Q, b, and c are functions only of ¢. This restriction
immediately limits Zo, Wp, and Qg to constant values.

It should be noted that, although the time dependency has been elimi-
nated in direct form from the equations of motion and energy, it is still
present implicitly in Z, W, and Q. These equations still possess char-
scteristics and integration must proceed along the characteristic lines
given by equations (98) to (100).

In line with these arguments, equstion (102) is differentiated
directly; this differentiation ylelds

Ve \Pe A B¥
az _ (82} _ = Constant (103)
& \ot/, o .

After equations (89v), (90), (102), and (103) are substituted into equa-
tion (92) and the terms are transposed, the following differential equa-
tion for local enthalpy results:

2
2 1fe = .
Yy fPu By L b ot L
2V:—0 gé:ﬁgﬁ*'aalhfgﬁ (&z) &J : (204)
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Similar menipulations lead to the equation in terms of stagnation enthalpy
from equation (96):

M Yuftw - 2
2vdee) Maw T 1 a. ¥ 2 lpe Mig® o Wy wpel ekl ,wpefyy @
-3 Q . 3 -2 — T2l -2 vl ¥ ¢ 1
(u)'i 0 - By % L€ 0 z 8 fo = ooF
Y T am -t ugh
Lo (205)

Equations (104) and (105) represent the alternate forms of the energy
equations and, in genersl, must be solved by either a graphical-isocline
or s numerical step-by-step procedure in conjunction with equeations (102)
and elther (89b) and (90) or (93b) and (94).

Analytic solution for flows generated by waves of zero thickness.-
The boundary layer behind zero-thickness waves sdvancing into a fluid at
rest permits the introduction of the relations Zg = Wg = Qp = 0 at the

wave location (go = gs) in the preceding set of equations. The familiser

shock wave of the shock-tube flow is such a wave. Another is the mathe-
matical model of a "negative gshock” which is defined as an isentropic
expansion wave having finite pressure ratio and zero thickness, traveling
with the speed of sound of the undisturbed fluid, and generating a flow
behind it otherwilse identical to that genersted by an expansion wave of
finite thickness and identical isentropic pressure ratio. Hereafter in
this report, the unqualified use of the word "shock" or "shock wave" in
reference to a potential-flow discontinuity will designate a shock wave
satisfying the Rankine-Hugoniot equations. Solutions to the complete
Prandtl boundary-layer equations for the shock may be found in refer-

ences 6 and 12 and for the negative shock in reference 13. In these
solutions the velocity and tempersture profiles asre simllar everywhere in
the region of flow (that is, the profiles change shape only by a stretching
factor normel to the wall as time increases). The integral-solution coun-
terpart to such a similarity throughout the field of flow is represented by
the constancy of A, T, Q, b, and c everywhere in the field.

The conditions Zg = Wog= @y =0 at Ep = £g transform equa-
tions (102), (104), end (105) into the following equations:

v P\ £ -t
Ye\Pe/ = — A B¥ w & £
91 3% 8
2VvP_!)2A11L rope h,’i;. 22“1[ - %)z j\
o) 5 _YeVPe ALK 1 ¥ By ee " PTG AW I S M i @ (207}
.(E" BEE- R SZV—‘C‘) ‘1“'91':1*. 2"“") v e 3“12“/:’ o

&
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2 v
AN Yy
) szv“") ae L lgrpel®, ee ME  wufyy O (108)
(s> "z 8 - e 12° v \pe] ‘aBE_ 6 velpe) ODF Ner
¢ Y = - &8 Nk, exe v - ts
* TLox ‘-"ln* 8o 5_

If the conditions of constancy of A, T', Q, b, and c are now

im 4 8§ & ﬁ VA 4 i
ose .
D - B R and l must be constant. It must thgn
follow from equations (90) and (94) +that

(&) »*
z_\2 (1098)
=2t __ = Constant 109a
W g\2

v

o] 2 2
7z, \a) ©
2 = = Constant (109b)

Since Z is & linear function of ¢, the terms W and Q must also be
linesr functions of &, end their derivatives wlth respect to £ are
constant. Equations (107) eand (108) indicate, however, that the .deriv-
atives of W and Q are functions of ¢ wunless the second terms on
the right-hend side of the equations are identically zero. Equating
these terms to zero in order to satisfy the similerity relationship

produces

a\2
2 1/d ==
g_fsw b B D b M) e B} h
E 2 C Es 5%
%=_8i+s_ 1(e _288% (111)
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Equation (110) must be solved simultaneously with those for g

(eqs. (D15) and (D16)), %—* (egs. (D9) and (D10)), and T (eq. (89Db))

to determine the values of T and b +that would be required to make W
linear. (Similar relations spply for eq..(111).) Eliminetion of the
terms in the braces reduces equations (107) and (108) to

2
Yy (Pw 9 0
o M[CHY p 85
v€<pe> 1 AL B¥

.S_W. =H (112)
8/, 2, 8 _,

Vi, /0 2

o _W[TW) A 8 8
(§> "3 Ve("e) s (113)
S} P ]
§+ Bls—*-ﬁs

The terms W eand Q +then may be evaluated elither directly from equa-
tions (109a) and (109b) or by application of the linear relation between

these pearameters and £; that is,

SW
(g) (¢ - &g)
+

5Q
(8—§'>+( E - &)

Solutions to these equations may be found for any arbitrary specifi-
cation of free-stream and wall conditions behind any free-stream flow
discontinuity moving into a fluid at rest. The shock and negative shock
are special cases of this general case in that the free-stream crn-
ditions are specified by the conservation laws.

w(E)

Q(e)
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Solutions for the Boundary-leyer Parameters Across
Discontinuities in the Force-Streem Flow

Assumption of finlte discontinuities to replace mixing regions.-
In the free-stream flow generated by traveling shock or expansion waves
moving Into quiescent fluid, there are two general types of discontinuities
which will be classified as either strong or week. The strong discon-
tinulty arises from a jump in eny of the flow quantitles such as velocity,
temperature, density, or pressure. The shock itself and a contact surface
(entropy discontinuity) are of this type. The weak type indicates a dis-
continuity in the first derivatives of a free-stream flow varieble. The
flows at the leading and trailing edge of any finlte expansion wave exhibit
this type of singulsrity in that the derivatives change discontinuously
from a nonzero value inside the wave to & zero value outside of it.

In the following paragraphs, equations giving approximete "matching"
golutions to the integrated conservation equations for the case of the
wegk discontinuity at the trailing edge of the expansion fan and for the
case of the strong entropy discontinulty are presented. (The cases of
the shock or expansion-fan leading edge are trivial.) It is to be noted
that a line (zero-thickness) discontinuity is employed in both cases.
Although the entropy discontinuilty actually becomes a strong entropy
gradient either because of lamlner diffusion, in which case the width
of the gradient zone grows parabolically with time (ref. 20), or because
of turbulent mixing, this growth is ignored for the sake of simplicity
since any growth that is nonlinear in time would eliminate the conical
gymmetry of the problem. The behavior of the adjusting region for the
boundary layer st the trailing edge probably also would be parabolic in
time, but this fact has not been proven to date. The solutions obtained
under these zero-thickness assumptions would be only epproximate but
should give felrly good indications of the correct boundary-layer behavior
in regilons not immedilately adjacent to the dlscontinuities.

Matching equations for trailing edge of expansion fan.- The equa-
tionsg representing the conservation of mass, momentum, and energy entering
and leaving the discontinuity over the renge of y from zero to L(L >> 3)
are derived in eppendix F (egs. (F8), (F9), and (F10)). The states i
and J represent states on opposite sides of the discontinuity. Since
in this case there is only a discontinulty in the derivative, uy = ujj

Py = P3; Py = pj; and hy = hj5 end the equations take the form:

%\ hy¥ %\hp ¥
1 - Y;-—E;-V& - By¥ = i 5% - 85* (11ka)
uyjhy uy fhy
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2
h*
0y vy /) By Uy

2y %

%\ b .
1-) Lo (114b)

'Lll hl

3
hy* b h b *| n B% L
.i._:l-_¢i_2!*_ei_.3:ml_vl - 131*- 1 _1_+!-.l_ﬁ vi*.;.lAiIin.L..LgiJ_zﬁeJ-
by ul2 2um 2|uy uy ula by u12 2 T uy 2 hy ulz 2
2h. hq%*| b

13w, _¥* ___lad*-.L.L.,..J_'l-v_* VJ**'lAJIJ (11k4e)
2|uy uy u12 by ula 2 uy 2

These equations may be rearranged to give

—= = " (1152)
0y (8% _ (1 _¥\B¥(mx1a
A w /by \V b 8);
he*
(-2 - (- 8) B RS
81 _ - J t/ J (115b)
5o, (l__*x_*) ) _ﬁ)z E}i(z*_;e)
uy 2] 1 uy 1 ¥V b8 1
% % 5 b h¥*
t2-faizt-2li) o 2 560,10
e A (115¢)
& N « o wV,m [ g\ || mfexra) L zf
%%-[;1% %Eé-?‘j‘@)i*.{z(l_“)+“‘12{1-(w>:] by Vbe)i a(@)ili
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IP i 1is the state inside the expansion fan, all the parameters
of state i may be assumed to be known from the solution obtained by
integrating from §& = -1 +to that point (gte < gZ* being assumed ). The

velocity of the dilscontinuity must coincide wilth the trailing edge; that
is, V¥ = (u - a)i. In addition, since et J all free-stream derivatives

ere zero, Az = O.

Consequently, the problem becomes one of satisfying the three simul-
0

taneous equations (115) of the form sl-= f(bj,rj) and equation (28) in
J

the form PJ = Fj(bj). This system is equivalent to three equations of

] 8
the form 6%-: f(bj). Such a system with only the two unknowns Ei and
J

by 1s redundant and solutions would not in general be expected to exist.

In an effort to satlisfy the bﬁsic equations of mass, momentum, and
energy, snother unknown veriable R was introduced. The assumption was
mede that, instead of the line discontinuity, the regions 1 eand J
would be seperated by a mixing region of thickness equal to the product
of time and R; R by definition is equal to the difference between the
leading- and trailing-edge velocities of the mixing region. In this
menner, the conical symmetry was retained end a finite mixing region was
permitted. In addition, storage of mass, momentum, and energy as well
as hest-transfer and wall-shear effects was permitted inside this zone.
Evaluation of these influences was on the basls that the values in the
zone were assumed to be equal to the average of the values at the extrem-
ities of the zone. The three simultaneous equations in the form

%l = f(ﬁ,bj) were then solved. However, values of R so obtained
J

located the mixing zone as extending from a point inside the expansion
fan back to the trailing edge. Such a solution is not acceptable since
it was assumed that kj = Q. This solution may be interpreted as an

indication that the physical boundsry lasyer is influenced upstream of
the trailling edge, since the propsgation velocity for the disturbances
is higher in the boundary layer than in the free stream. (Thet is,

[-ael > [ul - all.) In other words, pressure pulses would travel faster
in the boundary layer; thus, it is logical to expect some type of dis-
turbsnce inside the boundary layer ahead of the potential-flow trailing
edge. . . .

Finally, in order to obtain a usable epproximation, the momentum
and energy equations (115b) and (11l5c) were solved simulteneously whereas
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the continuity equation (115s) was ignored except to provide a check on
the magnitude of the error introduced. Such s procedure has been employed
successfully for the momentum and continuity equations since Von Kérmdn's
early work on transition, in which 1t was assumed that at the transition
point the laminar and turbulent momentum thicknesses were equal, conti-
nuity being disregerded entirely (ref. 21). Comparison of the values of

ﬂ;’ obtained by simultaneous solution for bj and 81 or equations (115b)
93 83

and (115c), with that obtained from the continuity equation (using the
solution for bj) showed & maximum discrepancy under 2 percent. Thus,

the neglect of the continulty equation does not sppear to be significant
in this case.

Metching equations for contact surface or entropy discontinuity.-
The case of & strong discontinuity bounded on both sides by constant
free-stream flow regions of the same fluid will be considered. The dis-
continuity propagates with a velocity V¥ = uj = uj and, in addition,

py = Pj’ and ki = AJ = 0. Under these conditions, the matching equa-
tions (egs. (¥8), (F9), and (F10)) reduce to

8y% = 5% (116)
91 - 51* = Gj - 53* (117)
hi%* hs hs hy* h
e S T .- NP W SR N N S
h PR 21 T q o 1 T oA
1 Uy uy i uy

hs¥ h h hi*¥ h
._J__'j_.¢j_293+J_53*__J_i.vj*+}.AjIj (118)
By w2 2 u,2 By w2 2

Solution of the continuity and momentum equations (116) and (117)
immediately gives
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Since Af = Ay = 0, the following relations must also hold:

= é =
oy <9>i91 by (119a)
I3 = I3(\) = I (119p)

Substitution of these equalitlies into the energy equation and
rearrangement results in

218),- )] a3, - @) - [@B)f - 35) - w0

This equation of functional form £(b,T') = Constant is reduced to
the form f(b) = Constent by use of equation (28). The resultant eque-
tion cannot be solved in closed form but mey be easlly solved by trial
and error.

TRANSFORMATION TO AND EVALUATION OF PERTINENT PARAMETERS

IN THE PHYSICAL FLOW

Inversion From Transformed Coordinates to the
Corresponding Physical Flow Coordinates
The inverse transformation from the «, B, or o normsl coordinate

system to the physical normasl coordinate y may be carried out when the
profile functions are known. This transformstion is first i1llustrated

for the local enthalpy case.

The definition of B (eq. (6)) is inverted to

ﬁp P B h
Y - € 4p = - - (121)
v u/; o P Py Jo Be %
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o7

Substitution of the definition of h¥ and h)¥ enables equation (121)

to be written as

y Pe PP by By px
== — — + — —(p)| dp
v p, Jo |B B By

y

The expression for 6

h*
of —— with B.
hy*

to X.
v

stituting the identity ba = B.

to a nondimensional similar normsl ordinate

The expression

h, h ¥ B px
__e_B L E.;d_g (122)
1|Re he o by

may then be evaluated for any known distribution

Equation (122) is sultable for transformaetion from 8

Transformation of the velocity profile is accomplished by sub-

is, in turn, related

i<

y

as follows:

y _y¥y_V__Y (123)
vt v Vet Vb_@_
A
Thus,
7 Pelh: hy* B nx
y__ VB Pelbw  W* f al (124a)
vt b 2Pt B Jo By
or
__y__=ﬂ_e__b +_l_ — (124b)
vt p 8 P1\Re o by
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Equations (124a) and (124b) are the inversion equations for the
local enthalpy transformation from the B- and a-plane to the physical-
flow coordinate system.

Corresponding equations for the total enthalpy transformations are
as follows. (The identity ca = o is also employed.)

y Pe|Hw H1* © g% u12 Wy \2
ﬁ=—--—0.)+——~ ——*-dm-— —_
Py |he he Jo Hy 2he Jo \w

- g YL
v_t c -
€ A
2
y \/Z Pe|Bw HB* roge u) wfe 13,\2
= e ==+ — = dw - c — ] da (1252)
Vvt ciRmfte P Jo W e Jo

2 2
¥ yZ Pe By ¥ pca g W @fy
— O + ——— = do - cf —] da (125p)
vt ¢ 2P1|be he Jo H 2he Jo \W

Transformation of Velocity and Temperature

Profiles to the Physical Plane

*
Since the profile series result in distributions of 2 and E-_%
uy hy

or B in terms of a, B, or w, 1t is desirable to obtain profiles
nondimensionslized by an invarlant reference state in terms of y, &,
and t. In the previous section the inverse transformation of o, 8,
and o was shown to be of the form
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(126)

™
o)
PP
ct
\.’/
N

w= ok, Y
vet

The combinations of equations (126) with equations (8), (9), and (10)
produces the followlng equations for the profiles in the physical plane:

! Y1
ale(y‘vg;t) = E‘Z(g) %_—(E,, 4 >= Q(g) '&%(g:m) (1273-)

hy¥* Vet

h ¥ h- %
B,y =1+ 2qe) B <§ Y >=1+—l—(§) 2 (e,8) (1270)
he by *

H *
HH—G-(y,g,t) =1+ f(g) E—**(g,cn) (127¢)
1

If LS is computed by the local enthalpy method, the following
equation with values substituted from equations (127a) and (127b) rather
than equstion (127c) would apply:

2
H _ n he y-1lu Be
H_e'(y,g;t) = E(Y:g:t) e + ) [:ae(Y:th)J e (128)
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Eveluation of Wall-Shear and Heat-Transfer Coefficients

The expressions for the wall shear and heat transfer in basic form
and in various coefficlent forms are derived. In this section the designa- -
tion a after an equation number denotes the local enthalpy method and
b, the stagnation enthalpy method.

Consider first the wall shear:

\
du
Ty = W .
Y/w
g 2
Ty = Wyly 2 (é%)
de =0 oy -
> (129)
p
Ty = wuhy oF 2
Pw 6 1
T. Hy — W —
w W ik
Pe A Ve tZ
) L]

A dimensionless shear function '?e is introduced to eliminate the
time dependency in equations (129) with the result that T¢ = T(&) and

P  _Cfwbwlo A (130)

The rate of heat transfer from the wall to the fluid may be trested
in a like manner:

(131a) -
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1 Py 1
q-W' = e e— ”'W — Hl*Cl % (lBlb)

g
A = w e 27 —Bl Y (132a)

Ve (7 - L)p, Pe B¢ Be \/ﬁ
\/T

a€=

¥
A H©* 05
q.e:__l_P_wP_w_i___D (132b)

8 1 b* By

—= - b — (133a)
Te Npp mae 41

q 1 B* G '

—= - c = (133b)
Te Npr mae Ay

An alternate coefficient form which, although it is more easily
comparable with results of others, is dependent on both §, t, and a
flow length 1 may be expressed in terms of a Reynolds number based on
flow length. The following definitions asre used:

\

1 length potential flow has traversed since acceleration
from zero wveloclty by wave
uql
R =
Vi
T
op = —— ) (134)
2
= p.
5 Pyt
cy = Nprdw
*
Pty By J
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Equations (134k) are combined with equetions (129) end (131) to
determine

<]
247 —
A [Pwbw 1
ce \(/R = (135
f\[— VZ | Pebe Wt )

eny® = - 29 fewy 1 (1368)

¥

Ch _ bBl
E; Ty (137a)
EE:: - Egl Elt, (137b)

These relations (eqs. (135) to (137)) are eppropriate for the
constant free-stream flow behind a zero-thickness wave, since for this

condition 1 is given by

i}
1= ——(x - ugt) (138)

ul- Ug
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RESULTS AND DISCUSSION

SHOCK SOLUTIONS

Equations (106) to (113) for the local and stagnation enthalpy
methods were solved for the flow behind .2 shock wave advancing into
undisturbed fluid (region ). Solutions were determined for the fol-
lowing conditions:

(a) Five- and six-term series represented profiles of velocity and
enthalpy

(b) The highest order derivative was assumed to be zero at o= 1
and B =1 .

(e¢) Prandtl numbers of 0.72 and 1.0

(d) Wall temperature equal to the undisturbed fluid temperature
end wall temperature equal to the recovery tempersasture.

Figures 2 to 4 present the results in coefficient form snd show com-
parable results for the solution of reference 12. The potential flow is
designaeted by the subscript ¢ and represents the shock-tube region
appropriate to this case.

The coefficients are independent of the ratio of the specific heats
v when plotted against a function of the ratio us/ug. The choice of

u
s rather than -2 as the abscisss was made in order to represent
Us - Ug Ug
the entire range of shock strengths along & finite absclssa.

These solutions necessitated finding the values of b which satisfied
the equations for the local enthalpy case (eqs. (110) and (D15) or (D16)) or
the values of c¢ vwhich satisfied equations (111), and the equations for
/O (analogous to egs. (D15) or (D16)) when the stagnation enthalpy
equations were used. These equations are polynomlels of high order in b
and c¢ and, as a consequence, multiple roots were possible. Only two
roots with reel positive values of b or ¢ were found for each case.

One family of equations originsted at the value b,c = 0 for the
limiting wesk wave and the values were much less than unity throughout
the entire range; the other family originated at the value b,c =\,NPT

for the limiting wesk wave and remained of order one for all waves. The
latter famlly was chosen as the correct one after gpplication of the
argument thet, on physlcal grounds, an infinite ratio of velocity to
thermal-boundary-layer thickness is not acceptable.
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Because the momentum equation i1s independent of the energy equation
when the outer inviscid flow is constant, skin friction is independent
of Np, &nd is the same for both local end stegnation enthalpy repre-

sentations. The terms cp\(R for the five- and six-term profile series

(fig. (2)) agree well with the corresponding values of reference 12, the
five-term solution being 3 to 4 percent lower and the six-term solution
being only from 1 to 3 percent lower than the reference valuwes. The coef-
ficients are significantly different from the steady-flow values of

ce\R and cp \JF; the unsteady-flow values are sbout two to three times

as large. This difference arises because shock-initiasted laminar boundary-
layer flowe are more closely related to the Rayleigh problem of the infinite

plate set in motlon impulsively then to the steady flow over semi-infinite
plates. The flow behind the shock is equivelent to the Rayleigh flow for

the limiting weak shock with a pressure ratioc of 1.0 (ref. 12).

Heat-transfer paremeters for the special case Ty = T, defined by

equations (134) are plotted in figure 3; results of the present solutions
ere compared with results of the analysis of reference 12. As in the case
of skin friction, heat-transfer coefficlents agree well throughout the
range of shock strengths.

The recovery factor r is defined as

hay - hl How - by (159)
Hy -hy H -~

T =

vhere hg, = Hy, 1s the enthalpy of an insulated wall (qy = O). The

condition of zero heat transfer occurs when <§§> = 0 which, in turn,
v,
W

requires that By or Cj3 = 0. These latter will be zero when

]
o\

T,Q
(140)

I, = 10

for the five-term series and six-term series, respectively. Although in
figure 4 the discrepancy between the recovery factors of the local enthalpy
methods and those of reference 12 appears to be large, the recovery-
temperature error itself is fairly small because the Mach number is

limited to & meximum of 1.89. The following numerical example for air



NACA TN 394k 65

(as a perfect gas) with Te = 520° illustrates the fact. At a shock-

pressure ratio of 3.0, the adisbatic wall temperature from reference 12
is 1,443° compered with the six-term locel enthslpy result of 1,411°%;
and at a shock pressure ratio of 100, the temperature from reference 12
is 14,737° and that of the present analysis is 1k, 80LO.

Insulated-wall solutions by the stagnation enthalpy method required
recovery factors of unity for both five- and six-term profiles regardless
of Prandtl number. Faillure of thls method is attributed to the low num-
ber of terms in the profile function. In the locsl enthalpy method for
five- and six-term profiles, stagnation enthalpy profiles contain 9 and
11 terms, respectively, because of their quadratic dependence upon veloc-
ity. Thus the stagnation enthalpy profiles may have & sufficient number
of inflection points to yield zero heat transfer st a wall temperature
other than that equal to the stream stagnation temperature. When five-
and six-term stagnation enthalpy profiles are required, however, too few
points of inflection are available to satisfy the boundary conditions and
to give zero heat transfer at any wall temperature other than stream stag-

nation temperature. The result is the unique profile éi(aﬂ =1, 8g=0,
1

and ¢ = »; these values appear to be unacceptable for Prandtl numbers
other than unity.

Figure 5 presents velocity profiles of- the five- and six-term local
enthalpy solutions for the present analysis computed at the location

E = hatd for a velue of the parameter I equal to 2.0. ILocal and

ae Ug - Ug
stagnation enthalpy profiles for the same case are given in figure 6.
Shown also in these figures are the corresponding profiles evaluated
from reference 12. The integral-method profiles are slightly fuller in
the outer part of the boundary layer but are in close agreement near the
wall, the six-term profiles giving slightly better correlation then the
five-term profilles.

Solutions by the local enthalpy method with six-term profiles and
venishing stream derivatives were obtained for the flow behind a negative
shock propagating into region e. Skin-friction and hegt-transfer results,
cf\lﬁ and ch\/ﬁ, are plotted in figures 7 and 8 against £ie which is

an index of negstive shock strength. The functions are evaluated for ¥
equal to 1.4 and 1.667 and Prandtl numbers of 0.72 and 1.0. As for the
case of the shock wave, only the family of solutions with b near unity
was consldered.

Results of the snalysis of reference 13 for v = 1.4 and Prandtl
number of 0.72 are also shown in figures 7 and 8(a). Good esgreement with
the corresponding case of the present solution is evident.



66 = NACA TN 394l

EXPANSION~FAN SOLUTION

The initiel solutions to the hyperbolic differential equations

for Z end W iIndicated immediately that there was no unique methematical -

solution to the problem; instead, an infinite number of solutions were
possible for the six-term profiles. The reason for this behavior lay in
the fact that the starting value of A= 20 (I' = -10) not only produced

the fullest profile without exceeding a value of 1.0 for lﬁ(hf;> but

5 ug \h1¥
0 -
was also the maximum point on the curves of 7\(-5) and Ay A B¥

against A. In the range where ¢ approeches -1, the dominant terms

(as has been shown previously for ¢ = -1 in the discussion of the
starting problem) in equations (45) and (46) contain these parameters;
thus, it is possible to find solutlons on elther side of A = 20. Simi-
larly, for each A 1in this region, branch solutions exist for T on
either side of -10 corresponding to a b on each side of NPrl/2'
Furthermore, it was possible to change from one family'(say A < 20,
r>-10, b> NPrl/Es) to another (7\ <20, T'<-10, b < Nppl/2) in suc-
ceeding steps, and the derivatives obtained for %E and %E would permit

fairing of a smooth, although inflected, curve of T and b seagainst E§.
Thus, from a single solution at the start (point for n = 1) the possible
solutions multiplied so that at the first step away from ¢ = -1 (that

is, n = 2) there were four solutions; at the second step, eight solutions;
or at the nth step, 2% possible solutions.

The aforementioned mathematical phenomenon was ellminated on the
basis of physical logic that such oscillating soclutions were not com-
patible (at least in the region where ¢ approaches -1) with smooth
monotonic variation in all the potential-flow quantities. However,
there still remained the first four branches of the solution:

Branch I:

A<20; b>,/Npp; TI'> =10

Branch II:

A<20; b<\/Npp; T<-10
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Branch III:

A>20; b>[Np; T>-10

Branch IV:

A>20; b< \Np,; T <-10

These four branches were computed end the results of their solutions
are presented in figures 9 to 15. Also plotted in figures 14 and 15 are
the results of & power-series solution to the complete Prandtl equations
(ref. 15). This solution, obtained by expanding the veloclity stream func-
tion and a corresponding temperature-distribution function in terms of
powers of & + 1, contains terms up to (¢ + 1)2, is exact at ¢ = -1,
and has a progressive error as & Increases. Note should be taken that
the seriles solution was not completed until after the integral sclution
in the expansion fan was finished; thus, a comparison with the series
solution was not available in the early stages of computation.

An inspection of figures 9 to 15 reveals that, in the neighborhood
of &€= -1, the 2, W, Te, and qe curves of the integrel solution

are nearly coincidental in spite of the variation in the profile param-
eters A, T, and b. The values of Te and q€ also agree closely

with the solution of reference 15 in this region. This near-equivalence
of wall shear and heat transfer, concurrent with different values of A,
I'y and b, is typical of integral solutions which are not concerned
directly with the various profile shgpes inside the boundary layer but
instead are dependent on the integral of these profiles and theilr deriva-
tive at the wall.

As E& ©Dbecomes larger, branches IT and IV first diverge from
branches I and III; and the solutions to the former branches become
unacceptable when b becomes zero at § = -0.52 since this condition

5
indicates an infinite ratio of ih in the physical plane. Branches I

and III agree with the series solution within 2 percent up to § = -0.5
for Te and within 5 percent up to g = -0.7 for qe

Branch I solution does not continue past & = 0.62. At this point
£ = Ez¥ and further integration along the characteristic originating
from t = -1 1is prohibited. Brench III solution was halted erbitrarily
at ¢ =~ 1.0, the point at which Z approaches O. For this solution
Ey¥ > 1.0 so that further Integration was possible but was discontinued
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in view of difficulties (to be discussed in a future section) encountered
in joining the solutions to a constant-pressure region.

Velocity and enthelpy profiles of the four branch solutions and the
power-series solution are shown in figures 16 end 17 for values of
£ = -0.9, -0.7, and -0.5 (no solution for branches II and IV at £ = -0.5).
A1l solutions agree very well in regard to velocity profile (the over- -
shoot in weloclty in branch III at these values of £ 1is almost negli-
gible) and the agreement at ¢ approaching -1 between the integral and
the exact (that is, the power series as ¢ sapproaches -1) 1s much better
than that for the shock solutions. (Compare figs. 5 and 16.) Although
the enthalpy profiles of branches I and IIL agree closely with each other
and the series solution, those of branches II and IV indicate a different
and very improbable behavior from the beginning. The profiles for
brenches II and IV show minimum values of h (maximum velues of h¥/hy¥)

to exist inside the boundary laeyer, and such a minimum does not sppear to
be physically logical since the convective derivative of free-stream tem-
perature is always negatlive whereas the well remains at a fixed temperature.

Of the two remaining branches, I and ITI, arguments could be advanced
originally for the retention of both. For the case of A < 20 (branch I)

Dp
conslder the argument: Since the convective pressure gradient =1
D loge t
2
increases monotonically from a velue of - 7 1 gt £ = -1 to a value
Y +
of 0 at ¢ = 2 7 (value of E for Py = O), from steady-flow
y - z

analogy A would be expected to decrease monotonically. For the case of
A > 20 (branch III), the following reasoning ¢an be applied:

(a) If the solution were to be continued for an expansion fan of

infinite pressure ratio El(g) =0, &=

2 1)’ consider the expres-

7-

sion relating A with Z:

Gl
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For A +to be finite at ¢ = requires not only that Z 1is zero

but also that 8ll n derivatives gg% for n < %Z::ii - 1 are zero.

For A to be zero would also require §§§:= O to be true for n S %Z:ZEE.
These restrictions on %E% are very rigld and a violation would not be
unexpected; thus, A= o« (fhen £ = 5 ? l> is possible.

(b) From steady-flow experience, when & strong favorable pressure
gradient is imposed on a flow in which the wall is hotter than the free
stream, the local free-stream velocity is often exceeded inside the
boundary layer (that is, A > 20).

The subsequent completion of the series solution indicated a pref-
erence for the case A < 20 since in the vicinity of & = -1 the

profile 2 never exceeds 1. (see fig. 16.) It should be noted, how-

u
1
ever, that, in the region ¢ > -0.5, the profile of reference 15 shows
a tendency to exceed 1.0. This value of & 1is such that the error
arising in the series solution by neglecting O0O(1 + 5)3 is of the same
order as the velocity overshoot.

In view of the foregoing arguments, the following policy was adopted:
The branch of the solution for A < 20 is considered to be the correct

and most accurate one. Results of this solution including pertinent
derivatives may be found in table I. Results for both branches I and IIT
will be presented in some cases of ?e and ae since, as mentioned
before, the integral method itself cannot distinguish the behavior inside
the boundary layer.

From an inspection of figure 15, a maximum value of q¢ is evident

in both the integral and power-series solutlons. Such a maximum was
expected since the ratio of free-stream total enthalpy to wall enthalpy

has an initial value of 1.0 at & = -1, decreases to £E =0,

2

+ 1
and increases thereafter so that it passes through 1.0 again at ¢
(See accompanying sketch.)

ll
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/

O 1 1
-1 0 1

E—

Since the difference in these enthalpies may be considered a measure of
the influence of the local free-stream flow on heat transfer, the heat
transfer to the fluid would be expected to increase from an initial value
of zero to a positive meximum, return to zero, and finally become nega-
tive. The fact that the positive maximum at ¢ = -0.6 .and the return
to zero at £ = 0.5 for solution I occurred at lower values of & +than
the maximum and zero difference, respectively, in the stasgnation enthal-
pies reflects the past history of the boundary-layer flow. Energy has
been added to and stored in the boundary layer so that at a given value
of & +the total enthalpy distribution in the boundary leyer is entirely
different from that which would have existed if the local free-stream
condition had been constant to that point. Similar behavior occurs for
branch III.

A maximum also exists in the curve of the variation of ?e with ¢

for the integral solutions (fig. 14). (It does not appear in the series
solution since this effect requires consideration of terms of O0O(1 + g)

or higher.) A simple explanation for its occurrence in this particular

range of & 1s not obvious although the existence of a maximum at some

point in the expansion wave will be argued.

Although the computations have not been carried out to large values
of ¢t (and, as discussed previously, the no-slip conditions are violated),
en idea of the behavior of % and G, under the Prandtl boundery-layer
assumptions can be obtalned from physical considerations. For an infinite
expansion-fan strength (El = o), the following conditions apply:

_ 2
gl_?’—l

H h.
i e I 2 w2 =0+ 2
By Ly 2 =

I
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Thus, although the free-stream density, pressure, and temperature

have all become zero, the nondimensional free-stream velocity u; and
H
stagnation enthalpy ratios E; are finite. If this situstion is repre-~
W

sented as an infinitely thick boundary lasyer separating a surface from
a stream of finite velocity and total enthelpy, the wall shear and heat
transfer would then become zero. The following sketch indicates the
anticipated form of the curves for %¢ and G, the solid lines denoting

computations and the dashed lines, possible extrapolations.

\\
T ~ ‘Pe
€ ~
~
or ~ -
A Qe ~
e ~
~
\\
0 AN — ===
N —_—
~ -
~ —
~ e —— —
1 J ] ] 1 1
-1 0 1 2 3 L

2
For the wall shear to spproach zero as approaches requires
PP € app =T q

a maximum on the curve of the variation of ?e with €. Similarly, the
curve for the varistion of ae with & must have both a meximum and
minimm value.

Dimensionless velocity and enthalpy profiles inside the expansion
fan for various values of £ are shown in figures 18 and 19 for the

branch I solution. One may note in figure 18 that the value of the
dimensionless normsl ordinate at the edge of the velocity boundary layer

4 increases nearly linearly with ¢ in the range -0.4 S ¢ £ 0.6.
\J¥et/s,,

u
Since —i-= __2_3{1 + &) and A does not change drastically, it is to
8¢ v+
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be expected that the slope of the velocity profile at the wall would be
nearly constant in this range and hence result in an approximastely con-
stant skin-friction paremeter. (See fig. 14.)

Although the wvalue of I is also epproximately linear in

\/vet

Sn
hy¥

the same range, the wall heat transfer 1s not constant becsguse: (a) EZ_
is not linear in &, and (b) I' approaches and passes through the value 10.
Condition (b) requires an inflected enthalpy profile and a resultant
reversal of the sign of the heat transfer. (See curve for ¢ = 0.6 in

fig. 19.)

The behavior of the solutlons at the leading edge of the expansion
fen merits consideration. Consider the following limiting equations:

For six-term series:

2 _
lim 2= 1im A[2) (¢ + 1) = 1im 0.1148(1 + &) (141)
£l E>ad \B Bl
For six-term series:
~ E‘l
1im T, = — = 1lim 1.118 ——— (1k428)

T ha \/g ¥ 1 \[‘ L T+t

For five-term series, <&}> = -0.647:
1/a=1

A w
lim T¢ = lim =1 ——--lﬁm 1125—1— (1k42p)

E—-l E—-- \/g + 1 V—_ E—>-l \’1 + &
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Consider the same limiting equations for the case of a vanishingly
weak positive or negative shock (that is, us - % ae, U1 — 0):

For the six-term series:

glim-i_-]_ - 28 Z%% §1m+ (284 3 E) = 0.20406 g1im (&g 3 )
= gl
E— £1 E— +l £~ £l

(1k3)

For the six-term series:

u Ay g%
lim T = Lim = i ’_E . 0-259u;
ol Eertl\fre eV 2 A o 22 B T &

£~ £1 E—» £1 E- +1
(14ha)
Tor the five-term series:
~ 0.54Tu
lim T¢ = = §_ - DeoriE

Eg— 1 g +l \ ’+§s TE 2 g +l o T

E—-» 1 g—> 1 E- 1
(14k4b)

The retios of the limiting values in the expansion fan to those in
the shocks are then

For the six-term series:

z
1im —22 =o.1_1h8 = 0.5626 (145)
t-» Zshock 0.20406
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For the six-term seriles:

(% | | __
1im >exp _ 138 5 000 (146a)

Bl (‘Fe) 0.559 _

For the five-term series:

(%)
1im o T P (146b)
Bl (? ) 0.547

€ /shock

Similar ratios mey be found for W and ae' The power-series
solution, which is exasct at & = -1, alsc ylelded a ratio of ?e exactly

twice the Rayleigh (vanishingly wesk shock case) value. These results
will be applied in a later section to obtain approximations to the inte-

gral solution for any ges.
DISCONTINUITY SOLUTIONS

At Trailing Edge of Expahsion Fan

Solutions to equations (114b) and (1llhc) for branches I and III
obtained at the weak discontinuity arising at the trailing edge of the
expansion fan are shown in figures 20 and 21. For type I solutlons, the

]

ratio e—i (the subscript 1 indicates conditions inside fan at tralling
J

edge; the subscript J, conditions outside fen at trailing edge) was in

< 84 < ¢i
the range 1.05 35 3, = 1.12 whereas a— was in the interval
J

)
0.93 < ¢—i- <1.10. For branch III, the ranges were 0.56 = 2i<iae
o J
and 0.98 éiai-é 2.2, respectively. As mentioned previously, the values
J

from the continuity equation (113) varied from those given in figure 20
by no more then 2 percent. For branch III and for values of Eygo > 0.6,

no solutions could be found with a physically acceptable value of b
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(that is, O(1 - 10)). This inability to match the values at the trailing

edge may be construed as a further argument ageinst the use of branch III
solutions.

0,\° =z g\ w
Since (—l> =1 ang <—;> = —15 the discontinuous change in 2
%/ 23 P3) V3
and W at the trailing edge represents a Z-jump and a W-Jjump in the
boundary-layer characteristic system. These Jjumps may be considered
analogous to the change in values of the Prandtl-Busemann parameters
(C1 and Cp of ref. 22) at a vortex sheet in the steady-flow character-
istic system since there is a discontinuous variation without any inter-
sectlion of characteristics of the same family. Of course, these Z- or
W-Jjumps exlist only mathemetically, since in the physical flow viscous
effects would diffuse the Jumps into steep gradients with the peaks
rounded off, a situation similer to that in the steady flow where the
vortex sheet would undergo viecous diffusion.

(%) (3
Te/y q€)1
In figure 21 are shown the ratlos ,—— &and —— of the shear

Pt )
(TG)J (qe)J
stress and heat tresnsfer on opposite sides of the trailing-edge discon-

tinuity. Both solutions exhibit zi-g 1.0, a relstion which was expected
T
J
for a flow emerging from & region of favorable pressure gradient into
one of zero gradient.

For weak expansion waves the trend of the heat transfer at the
trailing-edge discontinuity is that which would be expected from Reynold's
analogy in that the heat transfer decreases similarly to the skin fric-
tion. However, for values of Ei¢ > -0.2, the opposite occurs and the

heat transfer in region { at the trailing edge exceeds that inside the
expansion fan. No obvious argument 1s apparent to justify this behavior.

Velocity and enthalpy profiles on opposite sides of the trailing-
edge discontinuity ere shown in figures 22 and 23. Corresponding pairs
of velocity and enthalpy profiles show only a slight deviation across
the discontinuity.

The veloclty profiles inside the fan are fuller near the wall than
in the region ¢ because, as mentioned previously, the favorable pres-

)

sure gradient is absent in . Since e—i_-w 1.0 and the thicknesses of
dJ

comparable pairs of velocity profiles are nearly equsl, the adjustment



76 NACA TN 3oLk

of the boundary layer at the trailing edge of the expansion fan 1s
essentially a transfer of momentum from the inner part to the outer part
of the boundary layer.

At the Contact Surface in a Shock Tube

Equation (120) was solved for various expansion- and shock-wave
pressure ratlios for the speclal case arising when the same gas is used
in both the high-pressure end low-presgsure chambers of a shock tube.
These solutions indiceted no change in shear stress across the discon-
tinuity, and only & small decrease in the megnitude of the heat-transfer
rete although W, I, and b show extreme discontinulties which, of
course, would be rounded off by viscoslty. At first glance this heat-
transfer result might eppear to be incompatible wlth the physical flow
since across the contact surface there is always a discontinulty in the
free-stream stagnation enthalpy. For a recovery factor near 1.0, the
heat-transfer rate might be expected to vary as the difference between
the free-stream stegnation enthalpy and the wall enthalpy. (For example,
when M; = 1.0, this difference is -0.1Thg in region € and 0.5hc in

region o). However, on further inspection, it appears physicelly plausi-
ble to expect the heat transfer to chenge only slightly although the free
stream changes markedly. As the outer contact surface progresses st free-
stream velocity, the colder fluid forming the outer part of the boundary
layer Jjust behind the contact surface overrides the hot fluid near the
wall. Consequently, since the fluild adjacent to the wall originally came
from region o with a high stagnation enthalpy, it still possesses enough
energy to maintain a large rate of heat transfer simultaneously to the
wall and to the outer part of the boundary layer. The enthalpy and veloc-
ity profiles for the case Mg = 1.0, E&4o =0, &g = 0.833 1in the region

nesr the entropy discontinuity are shown in figures 2k to 26. These fig-
ures show the initial hot-fluid entrainment nesr the well and the subse-
quent rapid readjustment as the energy of this fluld is given up to the
wall and outer boundary layer until finelly all identity with the previous
flow in region o is lost and the boundary layer behaves as one would
expect if region { had been the only influencing factor. Although the

veloclity boundary-layer thicknesses ( J at 2 - 1.0) are approxi-

V.t U
€
mately equsl on both sides of the discontinuity (see fig. 24), the thermal

boundary-layer thickness immediately behind the discontinuity is many
Y5h
Ve'b g
¥

th

times that ahead of the discontinuity { that is, = 0(10)\. A




NACA TN 394l , T7

much larger thickness of the thermal layer in this region is justifiable
on the physical basis that the temperature is forced to go first from Ty

to a value near T,; > Ty in the hot sublayer and then revert back to
T¢ < Ty in the outer layer. (See figs. 25 and 26.) No such behavior

is required for the velocity since up = ug. Of course, because of the

effect of mixing and diffuslon, the discontinuity of zero thickness itself
is a physical Impossibility; thus,the profiles in the immediate neighbor-
hood of the contact surface do not physically exist, although the trends
exhibited are probsbly correct.

DISCUSSION OF CHARACTERISTICS SYSTEM

The Characteristic Plot for the Shock Tube

Since the unifying influence on all the various particular solutions
to the localized phenomena existing in the shock-tube flow (the effect of
only one wall being considered) is the characteristic system, brief men-
tion of a few significant factors will be made &t this point. First, all
solutions have been obtained in conical form in that everywhere Z, W,
A, T, and b are functions only of §&. Consequently, although the
slopes of any characteristic curve are equal to the product of time +t
and a function of &, the limiting lines dividing the integrations from
£ = -1 end those from ¢ = &, are invariant with time. (See egs. (53)

and (54ka).) A boundary-layer charscteristic diagram for Ete = O is

shown in figure 27 and may be considered typlcal of the disgrams for all
Ete S 0.5. Free-stream flow characteristics and a particle path are also

shown. The regions -15¢ S Ey* and Ey¥ St St, emerge as two com-
pletely independent regions since no boundary-lisyer characteristic in
one region was generated in the other. Only the region Egz¥ Se< Ew™

depends on both the expansion- and shock-wave strengths because char-
acteristics which originated at £ = -1 and § = E5 cross this region.

From the characteristic theory, in the region of velldity of the
equations, there can be no discontinuity in the functions Z or W but
there may be discontinulties in the derivatives of Z and W. At the

location ¢ = &%, there are discontinuities in both 27 il s
z BE BE
+ +

whereas at the location E = gw* only <§§) is discontinuous.
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Location of gy* by the "Anchor Point" Method

The fortunate circumstance that Z 1s continuous across the entropy
discontinuity (for the case of the same gas on both sides of the discon- -
tinuity) permits the snalytical determination of both the location of
g add values of W, T', and b along Eu¥* (ell of which would other-

wise have to be obtained by numerical and graphical methods) and thus an
"anchor point" 1s available toward which the graphical-isocline methods
used for g, S & S Eg must converge at Ey¥. The mathematical device

employed to obtain this result is to shrink region ¢ to zero, to let
region € exist from Ere to Egs and then to solve the resulting

positive-shock equations. This distortion of the potential flow leaves 2
completely unchanged from its distribution when o i1s nonzero, since Z 1s
8t11l linear end continuous in the interval Ez* S € X Eg. (See acccii- ’

panying sketch.)

Z —.
0
W Anchor po:l.nt/ =~ -
S
Distorted 7T~
0 1 l | 1
-1 Ere £ ¥ £ By €,
3

Furthermore, the curve for the variation of W with § will remain
unchanged in the interval ¢  g,* since the W-characteristics orig-

inste at £ = -1 and the Z-characteristics, although they originate at -
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£ = Eg, carry the unchanged (correct) value of Z at each t. In the

Ainterval £ > §W*, the distribution of W 1s now both linear and con-

tinuous but does not represent the true distribution; however, at & = g%,

the value of W 1s correct and can be computed enelyticelly from its
linear variation from O at £ = £,. The terms I’ end b, which are

constant for Ew* St s £Eg 1in the dlstorted flow when region ¢ has zero
width, are also the undisturbed velues at & = Ey¥.

Physical Silgnificance of the Critical Characteristics

The mathematical singularities gz* and §W* of the characteristic

integral solution have been found to be the limits of forward integration
along a characteristic if the mathematical seguence of events 1s to follow
the physical sequence. The further significance of these integral singu-
larities in relation to singularities erising in the complete Prandtl
boundary-layer equations and in the physical flow willl be discussed in
this section.

The complete unsteady Prandtl boundery-layer momentum and energy
equations given in appendix E (egs. (E1l) and (E12)) in ‘the trensformed

coordinate system .&,n,t contaln the term § - %': as a coefficient for

2 |
d°f og
, —, and g. Consequently, singuler behavior might be expected
on 08 Ot

in the region where ¢ approaches -gi
i
u _ of _ x
Such singular points (— = == = —| are roughly related to the
8c On aet

location in the boundary layer at time +t of particles which were orig-
inally et x=0 and t=0. Nowat x=0, t =0, when the flow was

originsted by the instanteaneous formation of the expansion wave or shock
wave or both, a singularity was propagated noepmal to the wall out to all
values of vy. This singularity coincided with the expansion wave (which
at t = 0 has zero thickness regardless of strength) or shock wave or

both. In the case of the shock tube when both expansion waves and shock
waves appesr simultaneously with the dlaphragm burst, the singularity is
also concurrent with the position of the contact discontinuity at © = O.

The boundary-layer assumptions admit no diffusion in the streamwise
direction so that this singularity is conveyed along with the boundsry-
layer flow and, at any time +, will appear &t a value of
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t
x =f u(x,y,t) dt
0

Consequently, in the complete boundary-layer equations, the mathematical

singularity at ¢ = §£ mey be assumed to have a correlstion with the

on
physical location in the boundary layer of the generating singularity or
contact discontinuity. In the shock-tube case the singularity reflects
the separation within the boundary layer of the fluid accelerated by the
shock from that set in motion by the expension wave. The contact surface
is analogous to the "criticsl characteristic" for the potential flow.
The y-location of this singularity will very from y =0 at x= 0 to
y=95% at x= ujt.

Since integral solutions are not affected by detalls of the flow
ingide the boundary layer but only take into account integrated averasge
effects, the aforementioned singularity will also appear under averaged
conditions. Instead of the singularity distribution, at various values
of y for various values of ¢, which is found in the physical flow and
in the complete Prandtl boundary-layer equations, the singularities are
lumped together and appear for all values of y < & at a particular

£ = £¥, The fact that the averaged location of the singularities ‘in
velocity and enthalpy do not coincide in the integral solution (that is,
ng ¥ gw*) mey be attributed to the fact that the velocity and enthslpy

boundary layers are identicel neither in profile shape nor in thickness.
Thus the two critical characteristics represent different aversged posi-
tions of the same physilcal singularity.

Additional discussion of the sppearance of singularities in the com-
plete boundery-layer equations for the expansion fan may be found in ref-
erence 15. In reference 23 the case of a semi-infinite flat plate Impul-
sively set in motion is treated, and the analogous problem of the relation
between a similar singularity arising in the complete equations and that
in the Integral equations 1s examined.

Momentum aend Energy Shocks

In any characteristics system, the merging of characteristic curves
of the same family denotes the end of the continuous distribution of the
dependent varisbles. For potential flow, the resultant discontinuous
change is called a shock wave and this definition will elso be applied
to eny discontinuous change in the boundary-layer parameters Z eand W
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resulting from the intersection of characteristics of the same family.
Such a shock is formed by the Z-characteristics for expanslon waves with
values of Eigo 2 0.508 Dbecause the slope of the characteristics orig-

insting from £ = -1 1s grester then the slope of those originating
from & = £E5. In figure 28 characteristic diagrams for the Z-characteristic

femily are sketched for the cases of
(a) E&ie = -0.5 <§ 0.508
{b) E&te = 0.4 - 0.508
(e) Ege = 0.508
(d) 0.508 £ tie S 0.62
Ete = 0.55
(e) and (£) &4 = 1.00

The relstive slopes of these sketches are distorted in order to indicate
more clearly the convergence or divergence or both convergence and diver-
gence of the characteristics. For vaelues of Eie < 0.508 (fig. 28(a)),

there is no merging of the characteristics, although a8 E4e - 0.508

(fig. 28(b)) the heavy density of characteristic lines behind the
expansion-fan trailing edge indicates a strong gradient. When §£.. = 0.508

(fig. 28(c)), the Z boundary-layer characteristic family in regions ¢{
end o has a slope equal to .that of the upstream potential-flow char-
scteristic (expansion-fan trailing edge) and all the Z-characteristic
lines from & = -1 are trapped at Ei, = 0.508 end extend to t =
slong Ete = 0.508. This condition is the initial formation of the

Z-shock due to the merging of the characteristies. For values of Eie
between 0.508 snd 0.62, the sketch (fig. 28(d)) is drawn for convenience
with the Z-shock located concurrent with the expansion-fan trailing edge,
but this location has not been established mathematically. The only math~
ematical restriction on the Z-shock location under this condition is that
the slope of the shock must be between the slopes of the bounding
characteristics.
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Methods for Extending Present Results

Since A2 O in the fan, it can be proven for Ere > 0.508 that

eny Z-characterlstic entering the fan must be bent from its direction in
reglon { toward the trailing edge of the fan. Although computations
in the expansion fen have not been extended past & = 0.62 = gZ* in the
fan, two prime possibilities exist for flows with values at the trailing
edge of & > 0.62. One is the shock-free flow diasgremed in figure 28(e)
in which the velues of & for all the Z-characteristic lines approach
Ex* = 0.62 asymptotically. The other possibility, sketched in fig-

ure 28(f), shows a Z-shock which must be located at ¢ S 0.62 +to permit
characteristic intersection since the characteristics from ¢ = -1 can-
not cross this line. Until the hyperbolic differential equations are
solved for this region, the choice of one or the other of the flows would

be purely speculative.

The method of procedure for solution where Ete > 0.62 would be

similar in meny respects to that employed for determining the flow end
shock location of a supersonic field about a cone (that is, integration
backward towerd the axls until certain conditions are satisfied on a ray

from the origin of the conical system).

For the shock-free case, a possible procedure would be:

(a) Assume a value of (—2%) at & = 0.62.

(b) Compute <§§) at & = 0.62; W and Z are equal to the value
+

at & = 0.62 obtained by integration from ¢ = -1.

(c) Integrate forward (&t > O\ along Ll and backward (8t > 0O
8t > 0 6§+ 5t <0
along <§§> to obtain values of W and Z at various values of ¢.
BE

(&) By trial and error, find the velue of ¢ et which the trailing
edge could be located in order to satisfy simultaneously equations (11l4b)
and (lllbc) with the velues of W and 2 obtained in (c) and also the
value of Z obtained by integrating forward from the corresponding shock

to the treiling edge.
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For the shock case the procedure would be slightly more complicated:

(a) Assume & Z-shock location Egg

(b) Solve simultenecusly equetions (11kb) end (1lke), with = Eyg

v
8¢
for A, b, and 6 on the positive side of ¢£gg

(c¢), (4) Proceed as in (c¢) and (d) for shock-free case.

Two points of interest in regard to the preceding outline of pro-
cedure should be noted. First, it is not to be expected that every assumed
slope at ¢ = 0.62 or shock location E7g would yield an eventual solu-

tion; in fact, one of the cases might be entirely eliminated and only a
portion of the remaining case would be velid. Secondly, the possible
difficulty which would be introduced if the W-characteristics elther
merged or reached their asymptotic value is not considered. By employing
the anchor-point procedure to locate gw*, it was found that, for a shock

tube employing air throughout, this difficulty erises at Ey* = Ege = 2.25.

THE COMFLETE SOLUTION FOR THE BOUNDARY LAYER IN

A SHOCK TUBE FOR 7 = LlL.4, Rg = Ry, AND A S 20

Combination, on the basis of the boundary-layer characteristics
system, of the component solutlons described in the foregolung sections
results in the general solution for the laminar boundary layer in a shock
tube in the entire region affected by the shock or expansion wave. The
solution for the case of £y =0 1is 1llustrated in figures 29 to 32 by

the solid lines. The dashed lines show possible smoothing or rounding
off of the discontinuities. The trends shown by these figures are typical
of the other wvalues of Eig.

Since the solution for the flows inside the expansion fan and between
the shock and entropy discontinuity have been discussed in detail, a brief
discussion of the behavior only in the region £y <t s Eq is presented.
Here Z was compubed analytically and W, by graphical integration. Fig-
ures 29 and %0 show Z +to be linear and continuous in this range with a
discontinuity in slope at &y¥*; whereas W 1s almost linear for
Ete S € S Ey* and then displeys very strong curvature as £ — 3 because
of the adjusting process required after the entropy discontinuity. The
value of b changes very little for E4e < & < Ey* and then becomes very

emell es W becomes large (& - &g).
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In the constant-pressure region between &y, and Ey¥, T¢ and G .

decrease in a menner similar to the decrease found either in the flow over

a semi-infinite flat plate or behind a shock or negative shock as the dis- -
tance from the leading edge or shock increases. In fact, in regard to 2

and ?e, the flow between £+ and gZ* is identical to that behind a

negative shock of velocity Eg = Eg4 (EZO 1s the point in filg. 29 where

linear extrapolstion of the curve of the'variation of Z with § inter-
sects the Z-axis), the outer potential-flow conditions being identical
to those in region ¢&.

The value of T reaches a minimum at ¢y* and increases continu-

ously and monotonically thereafter to a theoretically infinite value at
the shock. On the other hand, ae rises slightly from §Z* to gw*

end then begins the rapid adjustment to the large negative values existing
at the entropy discontinuity. The zero heat-transfer point appears in
the interval between §W* and £4. Between the entropy discontinuity

and the shock, the value of ﬁe decreases continuously and monotonically
tO -0,

A composite dlagram of the distributlion of velocity and enthalpy in
the boundary layer of the shock-tube flow i1s shown in figure 33 to com-
plete the description of the entire boundary-layer flow for E£ig = O.

In parts (a) and (b) of figure 33, the profiles existing at the various
values of ¢ are plotted at that value of £, and in part (c) the extent
end. location of the various waves and regions are indicated. The profiles .
existing on both sides of the trailing-edge discontinuity are drawn. The
enthalpy profiles existing on opposite sides of the entropy discontinuity

have been illustrated previously in figure 25. The maximum boundary-layer
thicknesses are located at the entropy discontinuity at any given time 1

and a second smaller maximum in velocity boundary-leyer thickness is

located at Eg¥.

Complete distributions of ?e and ae in the shock tube for various

matched values of expasnsion- and shock-wave strength are plotted in fig-
ures 34 and 35. (Large-size working plots of figs. 34 and 35 are available
on request from NACA Headquarters, Washington, D. C.) These curves, similar
to those for £, =0 discussed previously, permit the evaluation of the

wall shear end heat transfer at any point x,t or ¢,t in a shock
tube by using e single ges having ¢ = 1.4 and Npr = 0.72 for shock-

pressure ratios up to approximately 5. The dashed line, representing
the expansion-fan solution, 1s used for ¢ £ E4c &nd the solid lines, .

employed'thereafter, are used for the constant-pressure regions ¢ and o.
These curves msy be used in conjunction with the equations of reference T .
to predict waves generated by wall effects on an averaged basis (thick

boundary Jayer).
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If the method of reference 11 (thin boundary layer) is used to pre-
dict the wave generation, 1t is necessary to determine the vertical wveloc-
ity vy exlsting at the edge of the boundary layer. Integration of the

continuity equation (eq. (B3)) from vy =0 to y =5 and spplication
of the boundery condition vy = 0 results In the following expression

for wvg:
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The nondimensional parameter vy X is plotted as a function of ¢ in
Vve

figure 36 for the expansion fan in general and for particular values of
expansion-fan strengths &ie = -0.6, 0, and 0.5. Also shown in this

figure is the empirical curve vs\/51-= 1.360\/1 + £. This curve gives
€

a very close approximstion to the computed results in the fan and would
prove to be useful 1n the aenalytical Integrations required if the method
of reference 11 were to be extended to consider the expansion fan cor-
rectly. The repid increase in vy as & —» E3q 1s due to the rapid
increase in boundary-layer thickness in this region because of the pres-
ence of the hotter gas (low density) from o entrained in the boundary
layer.

APPROXTMATE SOLUTIONS FOR THE BOUNDARY LAYER IN A

SHOCK TUBE USING ONLY ONE FLUID

The complexity of the solutions to the reduced hyperbolic differential
equations for the shock-tube flows is such that an approximate solution
resulting In a large reduction in effort with only a small loss in accu-
racy would be most desirable. Such an approximate solution 1s described
in this section. For purposes of discussion, the previous numerical and
graphicel solutions to the differential equations will be termed "correct”
or exact.
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Negative-Shock Approximation for the
Expansion Fan and Region ¢

The simplest epproximation available is the replacement of the expan-
sion fan by a negative shock. This substitution was first suggested in
reference 7 and was also used as the basis for the computations of ref-
erences 11 and 13. In figures 29 to 32, which represent conditions in
an sir-air shock tube with E¢o = O, the results obteined by the negative-

shock assumption with both consideration and neglect of the critical char-
acteristics are plotted for comperison with the correct integral solution.
(Similar results are obtained for other values of &i., the discrepency

between the negative-shock and correct solution increasing or decreasing
a8 fie increases or decreases.)

The skin-friction parsmeter 7, in the region ¢ 2 gz* does not

depend upon the expansion when the critical characteristic 1s considered
and is hence the same for both methods; this fact is also true for ae

in the region & 2 gw*. It is evident that the negative-shock distri-

bution is a very poor spproximation to the skin friction and heat transfer
within the fan and that qualitative agreement exists only in the region

bhe S & S Eg*.

If it is assumed (by neglecting the critical cheracteristics) that o
the negative-shock solution is valid from the leading edge of the expansion
fan all the way to the entropy discontinuity (refs. T, 11, and 13), the
distribution between Ey* S & S &g 1s shown by the heavy extensions to

the negative-shock curves. Neglect of the critical characteristics is
tantemount to assuming that the flow generated by & negative shock which
originated at time +t = O 1s equivalent to a flow generated by a nege-
tive shock of the same strength originating at t = -,

Modified Negative-Shock Approximstion

Inside expension fan.- In view of the failure of the simple negative-
shock method to produce results that even qualitatively approximate the
true expansion-fan results, a more refined method of approximating the
expansion-fan solution with the negative shock as a basis was devised and
applied to the entire shock-tube boundery layer. The relation between the
true fen end the negative-shock wall-shear and heat-transfer functions for
the vanishingly week wave has been discussed and was found to be:
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For £ = 4o — -1:

]

= = 2.000
[}e(gteﬂ Negeative shock
and,
[’q‘e(é)] Fen = 2.000

o]

Negative shock

If these relations are assumed to be valid not only in the limit
£ » -1 but also throughout the entire expansion fan, the distribubtion
of T¢ eand §¢ mey be approximated as follows: At a given value of ¢

inside the expansion fan, let the wvalue of ‘l"e or 'cie be twice the wvalue

(at this &) obtained from the negative-shock solution for a constant
potentisl flow idéntical to that existing at E.

The results of this approximation along with the correct expansion-
fan results are plotted in figures 37 and 38 for y = 1.40 and Np, = O.72.

The approximastion for ?e 1s seen to have a negligible error for E <O

and en error of only 13 percent at ¢ = 0.5 (approximately the critical
characteristic for the negetive shock). The approximation for a€ diverges

at lower values of £, reaches an error of 20 percent at € = -0.5, and
increases thereafter. The reason for the relatively close agreement for
‘l"e over a large range of £ and the more repld divergence of a€ lies

in the fact that ae is much more sensitive to the boundary-leyer past

history of varying values of H; at the edge of the boundary layer. 1In
fact, the approximate value of ae would not become gzero until after

Hy > Hy (r < 1) whereas the correct ae becomes zero at & = 0.5 vwhere
H < Hy (r > 1). Therefore, in order to compensate for this effect, the

approximate curve for the variation of G. with ¢ in the range
P de

-0.5 St £0.5 is replaced by a straight line originating at the approxi-
mete value of §. at & = -0.5 and passing through zero at & = 0.5.
The equation for H;¥* is

*=7‘l 2_1
= R - U
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Consequently, the value of H;* passes through e minimum at € = O

and becomes O at € = 1 irrespective of ¢; therefore, the linear approx-
imation should be sppropriste for other wvalues of 9. The possible error
introduced by the lineer approximation for values of Np, other than 0.72

is not predictable.

In region (.- In the limit of ¢ — -1, the relation
[Z(g)]

[Z( gte):ll\Iega’c,:Lve shock

Fen = 0.56 ~52L-

for & = Ete —» -1 was found to apply. It is now assumed that this rela-

tion is also appliceble at the trailing edge of all finlte expansion fans.
In addition, at the tralling edge of the fan, the matching solutlon showed

Z
that the spproximation Ei'- =~ 1.0 was epproprlate. Thus the value of Z
J
on the {-side of the trailing edge of the expansion fan may be closely
spproximeted as

A

(-1 ¢ 50.5) (147)

=L
Z(E.te)g = 2[Z(gte):| Negative ShOCK; g

where the negative shock is that which produces conditions of region ¢§
behind it. Figure 39 shows that this approximation compares closely with
the correct values. The Z-distribution in the range Efge S & S &y is

linear and may be computed from equation (102). The shear stress follows
from equation (130) if a zero value for A is used.

The heat-transfer parameter ae for £ £ 6 £ E,Z* was computed
from equation (133a) by using the values of %, described previously
end values of b(By) from the negative-shock solution. In this respect,

it should be noted that the value of b 1in the correct solution changes
only slightly in the intervael £.. St s gw* and, furthermore, the wvalue
of b for the corresponding negative shocks _is a good spproximation to
the b-values in the region £ for ¢ < §W*.
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The dietribution of a€ for E,¥ <& g k¥ was assumed to be linear

(correct solution was nearly linear, fig. 35) and the value of ae(gw*)
was computed by the anchor-point method. For the interval §W* <E< Eqs
an inspection of the correct solution shows the following:

d

—_— 0

at E = gw*?

~

— << -1

at & = g3, and
(’cie)g ~ (d¢) g

at g = gd'

Consequently, the following interpolation formuls which gives

(Eﬂ%) = 0, 4e = -w, and (ﬁe) = (dg)y at E; Wwas used (the
a /g x & Ji. g

sqpare-rdot term was used to mske the slope a week infinity at gd):

- ¥
A(2) = 8(69 + [aeudﬂ - A () g—g—% 1- (148)
g d~ W

The value of |q at &5 1s known from the positive-shock selution.
9%/ a
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Summary of modified solution.- The refined approximate solution for
the boundary layer in a shock tube when the same gas is used throughout is
outlined as follows:

Inside fan:

[:?e(é)] ~ 2[?e(§teﬂ (-Lg¢ £0.5)
Fan Negative shock, Ei.=§

3 () =~ 2|q (&
[qe ]Fa.n [qe te)] Negative shock, Eie=E& (-1 ¢ g -0.5)

[aem] =~ 2(0.5 - E.)[ae(éte)]
Fan Negatlve shock, E+e=-0.5

(-0.5 =& £0.5)
Region ¢:

() &= byet Z(ge) ~ L[2(tte)]
2 Negative shock, tie
(b) &te S & S Ep¥: The value of Z is obtained from equation (102)
by using Eie as the base point; T, 1is obtained from equation (130);
and ae is obtained from equation (13%a) by using values of b and By
from the negative-shock solution.

(c) &z*¥ S & S &y*: The value of 2 is obtained from equation (102)
by using &g as the base point; T 1is obtained from equation (130)
(z and % are also exact values); G, is linear; and the value of Qe (Ew*)
is obtalned by the anchor-point method.

(8) ty* st g £g:¢ The values of Z and ?e are the same as those
for condition (c) (these are exact values); and dc is obtained from
equation (148).
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The results of this approximation for the shock-tube flow are com-
pared with the correct solution for three expansion and shock strengths
(y= 1.4 and Npp = 0.72) in figures 40 and L1l. In region o the
approximate and exact solutions are identical. The agreement between the
gpproximate and exasct methods is seen to be very favorable for the cases
represented.

This approximate method is assumed to be applicable for Npy other

than 0.72 and the approximate wall-shear and heat-transfer distributions
have been computed for the case where the same gas exists in both ¢
and o with ¥ equal to 1.4 and Np, equal to unity. The appropriate

shock and negative-shock results were utilized and heat-transfer results
are shown in figure 42. The skin friction is identical to that for
Npy = 0.72 for the preceding approximation since the constant potential-

flow momentum equation 1s independent of Npp. However, in the exact
solution ?e depends on Npr in the fan through the pressure-gradient

term in the momentum equetion; thls dependence would influence the entire
region & £ Ey¥. This dependence is probably small and is neglected

herein.

APPROXIMATE SOLUTION FOR THE BOUNDARY LAYER IN A SHOCK TUBE

USING TWO DIFFERENT FLUIDS

In order to obtain large shock-pressure ratios in constant-ares
shock tubes, it is common practice to use a gas with a high speed of
sound as the driver gas in the high-pressure chamber. Hydrogen or helium
are two such gases often employed. When various expansion-fan strengths
for hydrogen or helium are matched to the appropriste values of shock
strengths for air, the boundaery-layer solutions of the resulting shock-
tube flow in the regions £ <0 or £ > g3 may be determined by elther

the exact or the approximste methods described previously.

However, the region 0 S & £ty presents additional difficulty if

an exact solution is to be found. This difficulty axrises because the
boundery layer in this region contains both gases which were initislly
ahead of and behind the disphragm, the inner part of the boundary layer
being comprised mainly of the gas that was originally in ¢ and vice
versa. The relative distribution end concentration of these gases through
the boundary layer wlll depend on meny factors, one of which is diffusion
normel to the wall. Instead of attempting to solve thils problem exactly,
the approximate method described in the following paragraphs was employed.
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First, 1t was assumed that the wall effects of the boundary lasyer in
the region 0S¢ £ Ey* were ldentical to those which would have existed

if the boundary layer contained only the gas of region {. This descrip-
tion of the boundary layer becomes more erroneous as E increases from
zero, since the relative concentration of the gas o¢ will increase in
the intervel from & = 0 to Eg. An approximation to the magnitude of

the errors so lntroduced can be obtalned from the following sketch in
vhich the veloecity profile for A = 0 is’'assumed to represent roughly
the locus of the undiffused contact surface in the boundary layer between
the dilsphragm station and the entropy discontinuilty.

l-o
Gas ¢
o .5r
U Gés o
! |
0]
Ez* €s
At Eg* <§§ = é%-- 0. hOh) the contact surface inside the boundary

layer is at a value of o =~ 0.17; thus, for ¢ < Eg¥, most of the boundary
layer is comprised of gas ¢§.

The heat transfer and skin friction for 0 £ ¢ S &z*¥ can now be

found from forward integration along the cheracteristics originating
in &€ < 0 or by the modified negative-shock approach dlscussed previously.

The next assumption was that across the contact surface the momentum

(>4
deficiencies Ghat 1s, \/h p ii(l'- &%)dy) of the boundary layer were
0

equal, & known fact for the case of the same gas on both sides of the
discontinuity since 63 = 8j. This assumption appears to be reasonable

because the velocity boundsry layer in the vicinity of the entropy dis-
continulty is comprised almost entirely of the gas 0.
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Since the momentum thickness 8 as well as Z :Ln region o 1is
usually computed by using values of py for the gas o, the necessary

general conversion factors are summarized here. In this section, sub-
scripts denote the reference condition, and the conversion is based on
the equivalence of the momentum deficiencies at any ¢t.

I A Y AT YR
eepe = _/; e u_l(l ul)dy eoopoo (11‘9)
2
3]
Ze = 5= = 7, efe (150)
Vet Pele

Equations (149) and (150) would be used, for example, for a hydrogen-
air shock tube to evaluate Z 1in terms of hydrogen in state € from a
known Z 1in terms of air in state .

A linear wvariation is now assumed as the simplest approximstion to
the distribution for Z. and p e in the range gZ* SE S Eg; thus

£ - &g¥
Ze (&) = Z(eg*) + ;———E—;[Ze(gd) - Ze(gz*)] (ez* £ & £8q) (151)
d - 5z

where

Pootoo

Pehe

Ze(Eq) = Zo(tq)

and

pult) pule) = pul(Ez¥) pultz®) + :——%*—*[pw(m) pwlta) - pu(Ez®) l-‘-w(gz*)}
a - &g

E
= pu(Ez¥) pe + ropre

: *EJW(EQ) b = PylEz¥) ue] (ez* £t 58 . 1 (152)
d " 5%
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since T, = T = T, and since the boundary-layer gas at the wall was
assumed to be € at Ep¥ and o at E£3. The shear stress may then be
evaluated from equations (130), (151), end (152) as

- £ - k¥ pw(§d) Heo _ ljl
Pe(t £) pyle)  [2Zc(eg®) £g - Eg¥[pylEg¥)
Ae() - eulE) by , [2e\5Z - a 7 [Pw\SZ") He (¥ St < ta) (153)
TR ol MmN || 28) o Taten
1+ Z g\ 5d. -1
Eq - Ex*|Zc(E5%)

For heat-transfer computations, the region tr¥* st < Eq 1is divided

into two areas by the line Ew®, 1ts value having been determined from

the value of b of the asppropriate negative-shock solution. The anchor-
point method of the previous solutions is not applicable here because Z¢

is not unchanged in the interval Er¥ S & S &5 when the region ¢ is

shrunk to zero width. However, the values of b found in the other
solutions from the negative-shock and anchor-point methods did not differ
greatly; therefore, the value of gw* (which is a function of b)

obtained by using b of the negative-shock solution should be a falr
gpproximation. The value of ae(gw*) is then determined from equa-

tione (133a) end (153) with the use of the negative-shock values of b(Bj).

Again, as in the single-gas spproximation, a linear variation is used
for 'cie in the interval ¢Ex* <€ < £y, and the interpolation formula

(eq. (148)) is applied in the interval Ey* S & S £q. The value of the

heat transfer at the entropy discontinuilty to be used in equation (148)
is

[:ae(ﬁd):]c - [am(gd)] GC—j;)Q = (154)

The summary of the modified solution for two different gases may be
outlined as follows:

(a) £ < gZ* or & > tg: The solution is the same as the corre-
sponding solution for a single gas.

(b) &y* <& < Ey*: The value of Ey* is obtained from the negative-
shock solution; the value of 7.(t) is obtained from equation (153); the
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term ’c}e(g) is linear from ae(gz*) to ae(gw*); and the value of
dc(Ey*) is obtained from 7T(Ey*) eand equation (133a).

(¢) Ey* £ & < tg: The value of P¢(t) 41is obtained from equa-
tion (153); and the value of Gc(&) 1s obtained from equation (148).

Wall-shear and heat-transfer distributions were obtained when sn exsact

solution was unavailable by this approximate method for two gasses for
shock-tube flows using air (y = 1.40 and Npy = 0.72) in the region o

and hydrogen or helium in the region €. The properties of the hydrogen
and helium employed, the viscosity being ewvaluated at room temperature,
are indicated in the following table:

N
Gas 7_6 ( PI')G IE l-"_e a_G.
7 (NPI‘ L Reo He B
Helium 1.190 1.000 T.236 1.082 2.935
Hydrogen 1.000 1.000 14.365 o.485 3.790

For the hydrogen-air combination, exact solutions are available
for £ >¢t3q and for £ <O (since 7ﬁ2 = air)' The assumption that
only gas ¢ comprised the boundasry lsyer for 0 S g S Ez¥ permitted
the exact solution (7 = 1.4) +to be extended to &,*¥ for this case.
The approximate solution was used for gz* SESEg for the hydrogen-
air combinstion and also for -1 5S¢ §'§d for the helium-alr combination.

The results of these computations are shown in figures 43 to 46 in
which &4 is used as a cross-plotting parsmeter. (Large-size working
plots of these figures are available on request from NACA Headquarters,
Washington, D. C.) Distributions of ae and ?e desired for a specific
shock-pressure ratlo may be obtained by interpolation from figures 43
to 46 and by use of the data from figure 4T which gives the values of
E+e a8 a function of shock-pressure ratio for helium-air and hydrogen-

air shock tubes.
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For helium, ¢§&p* = £ when £4e = 0.435; this value of £ cor-

responds to a shock-pressure ratio %giv 19 for a helium-air shock tube.
o0

For hydrogen, Eg* = Ere when £ie = 0.508; this value corresponds to a

D
shock-pressure ratio 52:5 4O for a hydrogen-air shock tube.
[+ ]

CONCI.UDING REMARKS

A solution to the unsteady laminar boundary-layer flow inside cen-
tered expansion waves and behind both centered expansion waves and shock
waves has been obtained in this report.

l. The general method for obteining these solutions may be summarized
as follows:

(a) The unsteady Prandtl boundary-layer equatione are reduced by
integration normel to the surface.

(b) The velocity and temperature profiles are expanded in a power
series.

(¢) The wall temperature is assumed to be constant.

(d) The reduced equations are transformed into hyperbolic equations
in a conical coordinate system because the free-stream flow is conical.

(e) The reduced hyperbolic equations are solved in closed form for
the flow behind a shock and by numerical integrabion for the flow inside
or behind the expansion fan. Multiple solutions were found inslde the
expension fan snd the correct one was selected by physical ressoning.

(f) The integrsl technique is spplied at the discontinuities existing
at the trailing edge of the expansion fen and at a contact surface so that
the characteristic solution may proceed across these discontinuities.

2. For the problem of the entire two-dimensional, nonstationary
laminar boundary lesyer in a shock tube, the following solutions were
obtained: '

(a) An "exact" solution for sn air-sir shock tube (for a ratio of
gspecific heats of 1.4 and at a Prandtl number of 0.72) was obtained with
the method described in the preceding peresgreph. Inside weak expansion waves
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waves and in the flow reglion bounded by the shock and contsasct discontinuity,
solutions also exist to the complete Prandtl boundery-layer equations.
The integral solution agreed extremely well with these solutions.

(v) Approximate solutions in closed form, employing zero-thickness
expansion-fen results as a basis, for the following cases:

Air-air shock tube; Prandtl number of 0.72
Alr-air shock tube; Prandtl number of 1.00
Helium-sir shock tube; Prandtl number of 0.72
HyArogen-air shock tube; Prandtl number of 0.72

The approximste (or modified negative shock) and "exact” solutions
for air-air shock tube (Prandtl number of 0.72) exhibited very good agree-
ment. The simple zero-width expansion-fan solutions gave very poor
agreement.

%, Some of the more importent features of the "exact" solution are:

(a) The existence of zones of influence limiting the extent of for-
werd integration along a characteristic. The solution of the present
report was arbitrarily halted inside the expansion wave at the boundaries
of one of these zones.

(b) The existence of momentum and energy shocks or jumps inside the
boundary layer.

(c) The fact that skin friction and heat transfer inside the expansion
wave near the leading edge was twice that for a corresponding zero-pressure-
gradient potential (that is, Rayleigh) flow.

4, Note should be taken of the fact that the boundery-layer char-
acteristic system in conical coordinates derived in this paper is only
a special case of the universal compressible-boundary-leyer character-
istics system obtainable from the integrated form of the Prandtl equa-
tions. This universal boundsry-layer characteristics system is applicable
to unsteady compressible boundary layers in general and provides a powerful
tool for the attack on the problem of wall effects in nonstationary flows.

Tangley Aeronautical Laboratory,
National Advisory Committee for Aercnautics,

Langley Field, Va., January 30, 1957
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APPENDIX A

EXPRESSIONS FOR VARIOUS FUNCTIONS IN A CENTERED

EXPANSION WAVE MOVING INTO FLUID AT REST

The wave is sssumed to have the coordinates x =0, t =0 at its

origin or center and to have a leading edge which advances into the region

x< 0 for t >0. The Riemann invariant (see, for example, ref. 2kh)
prescribes the relation, valid everywhere in the wave, between W and

8, &s follows: —

P42

= 1
=l y-171 5 -1 8.’ ~1 ) (a1)

u+_2_a =J—. <Bl=_ll_l-a

Since a characteristic (wave) moves with a speed equal to the alge-
braic difference of the speed of sound and fluid speed, & definite rela-
tion exists between x and t at a point dependent on the value of Vg

end &, at the point x,t.

X = (u - gﬂ)aet _ | | (A2)
E =2 =u -a ) (Aj)

A combination of equations (Al) and (A3) results in the expressions
for the conlical form of by and ay: B, ~

2
- 1
uy 7’+l< +§) (AL)
1.2t
8 = —_—2a - : (a5)
vy + 1
2 —

The assumption of constant specific heat permits the expression of
enthalpy in terms of speed of sound. Also, since the flow is isentropic,
the pressure and density may be related to ﬁhe speed of sound. The fol-
lowing equivalents are then obtained:
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=Lt E
M = T
1 - ; 3
2
y -1 )
.I:l.l = 8, 2 = (l _ g
he —1 (7 + l>2
2
2y
b 7 -1
p. =5 = (2
=1 pe ( l)
2
P -1
1 4
= —= a
& Pe (— )
2
H  h acpTE h 2

S

99

(a6)
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APPENDIX B

DERIVATION OF REDUCED BOUNDARY-LAYER EQUATIONS FOR

TWO-DIMENSIONAL UNSTEADY FLOW

The Nevier-Stokes equetlons under the restriction of the Prandtl
boundary-leyer spproximation mey be written as

Su du du _ 10p ., 1 df ou
B—t-'l-ua—x-i'Vg—-a-a—x-'l'Eg(ug) . (Bl)
= 1
°‘"E%§ (B2)
%+%<pu) +5%_-(pv) =0 (83)

gi +u g& + v %3 + u(ii +u QE +v g;)

u O f, du oul\" ., 1L 8k oh 1
pgg;( ay)+5<$) pav(cp 5)4’5%% =)

Equations (Bl) snd (B2) are the momentum equetions in the x- and
y-directions, equation (B3) is the continuity equation; end equetion (Bh4)
is a form of the energy equation that is desirsble when the local enthalpy
is to be a parameter of the solution. An alternate form of the energy
equation employing the total enthalpy as & parameter is given by

oH + Sh oy &2 = 2 __Qi.__) (I_i NPr)(—— - u ——), + = =
(35)

An immediate consequence of equation (B2) is

p(x,¥,t) = p(x,t) = py(x,t) (B6)
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Combining equations (B6) and (Bl) evaluated in the free stream yields:

.a_P.=§.p_l.=..p a_lll_-l-u aul)- Dul (B‘T)
x  ox 1\t 1

The technique of integrating each term from y =0 to y ==
(see , for exemple, ref. 25 for steedy-flow integral method) is then
applied to equation (Bl). The velocity component v 1ig eliminated
through substitution of the continuity equation (B3) and the following
boundery conditions are employed:

At y =0 for all x,t ]

u=v =0
At y =« for all x,t

u = uy ’ (28)
At y =« for all x,t

du

° J

The following momentum equatlion results:

d [T lu _ (u\3e _E_a“lfmg__ w)Z|e
&J:) E‘l (ul)]pedy+u15’? 0 [ul (ul) pe V¥
e 5"‘1)]“” (ﬂl_l)+ -\ 2 gy s

U x w? 3t/ Jo P uy )| Pe

1 9 ® ulp _ P fu
L o 1 - 2)\e = B
AN L (39)

Equation (B9) is then rewritten by substituting © &and B¥* into equa-
tion (B9):
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1% My (_B_u_) (310)
W .

For a perfect gas with a constant specific heat, the integral term in -
equation (B1lO) msy be evalusted as follows:

[e2] (o] h* =] h-)(-

f(ﬂ_)idy_—_f _1'_1-..]_&@:.._1_. l-h—-:_)ﬁ-dy=-—l—v*

0 o) p€ 0 hl pe hl o) hl pe hl
{B11)

or

o 2
f ("_1 - l)_p_ dy = _12[.31*1::* + L(e* + e)] (Blia)
o \ P Pe ug
Hl - 2

Substitution of (Bll) into (B10) yields the momentum differentisl equa-
tion with x and t as the independent varisbles:
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The energy equation (Bll-) in terms of local enthalpy is treated in
a similer manner; agein the continuity equation is used to eliminate v
- and the following free-stream equality is substituted:

DH; Dh Du dp

1 1 1_ 1 %P1

—_— T —— —— = I l
bt Dt LDt By ot (B13)

Appropriate boundary conditions for the local enthalpy are:

At y =0 for all x,t

h = hy
At y =« for all x,t
h = hl
At y =« for all x,t
db o
oy
The resulting equetion for & perfect gas of constant specific heat is
- *
f ( )_&dy_l__Laul_l_lah]._laplx
) ox Pe Uy 3x  hy¥ ox prhy Ox

h‘/QOO‘E_:L h* idy"i 1 apl_lahl*fml_y__idy_
o W by ¥, up\Pihy 3t I* ot [JUo hy*/Pe

dh 3
L (1.1 =1 - .P_ X £ =
ulhl*(at oy Bft_) ._/-0 (l 1 dy * g‘f ( ) o dy =

1L S () 1 Tl e N
Pt By * CP,W(BY)W u]_h]_*s/;) p(By) Pe dy (B1k)

The last term on the right-hend side of equation (Blk), which repre-
sents the viscous dissipation, may be manipulated in the following menner.
First, the Chapman-Rubesin relation (ref. 18) between viscosity and
temperature
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B Cyr I
M Ty

__Twl/eTl’fS

is combined with the gas law and equation (B6) to give

> (B15)

J

o .
i = 1.0 (B16)

a relation valid across the boundary layer et arbitrary x and +.

Also since
J
=1 P
a Afo o (B17)
and
d _ 1 p
. B18
=10 (518)
o 1 d u
du U1 Y1 p W
au g == = = B . . Bl
Yy 1wy Ap = (B19)
Therefore, B
u2 u\2
® ufau\? e w2 pe (g w? o, P10
o oy YT T2, M=/ A %) &
o € Ape 0 pe 0
(B20)
3 n
T
since Bal =0 for o2 1.0. Equation (Blk) is now rewritten to give

the energy equation in terms of the local enthalpy with independent
varisbles x and t:
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§q+_;_3‘11+15h1*_1 oo\, 1/ 1 aPl_lahlv)e_

T e
up Ot peuihi* op o\dy/y  ughy

Similar integrations are performed with equation (B5) by utilizing
the following boundary conditions on total enthalpy:

At y =0 Zfor all x,t

HE = Hy
At y = o for all x,t

H=Hl
At y =« for all x,t

OH

—_— =0

y

The following equations, which are the total enthalpy forms of the energy
equaetion and sre equivalent to equations (Bl4) end (B21) result:

3 ufi_e\e 194 . 1 aHl*f“y_ _E\e
xJ o ul(l Hl*>pedy+ (ulbx +Hl* ox 0 ul(l Hy* pedy+

1 EX T m\p oo, L 9B LTL u\p
H,* ot H * dy+H*ax L dy +
b f 0 1/ Pe 1 0 Uy fPe

dpy LOfe1 o
_1 * _1_1>_o_dy+i.i LB \e g -
ppuq Ey ¥ 3t Jo \p Pe ug otJ g

(B22)

1 My /_B_H)
U‘lHl*pe NPr ,w\ay W
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3, _}_au1+1aHi*¢__1_ 1 1% 1531*D*+
ok \Yy &x @ HF X Uy w2 ey Ot H* ot
T2
u12 u12
1 13H1+ 2 15P18*+ 1 2. 1% 1 o
u Hy * x , ule Py 3t ugHy . w2 Py ot uq ot
LT3 172
1 My IBH) (
= B23)
u1Hl%pe NPr ,w\ay W

The reduced partial differentlel equations in final form for x
and t &8s independent variables are:

5%
@, |2, 1 Dufex B¥iga), 1°F|,,
x  |u; & w2 Dt \& By bV u; ot
afo &
1e*xe My (ou) _Mwffw)|_T1) e (B2ka)
u; 6 o5t pulzgw u\pe) \ o/, AB
€

3 3 ¥
1 (1) exy, 1 Flg, L.
u hy ¥\t pp ot A g u; ot uy F 3t
> BX
1 k'w(ah) Dl e\ 1 (BT g1 1
Poum* ey \37/y  uphp¥ u1\Pe) Moy w\ B/, V@ ugh*
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i B% _ ik o*
%, |z, 1 Dulp v CEUFES) 1 0%, 1,
> 2 u, ot u,; 6 ot
d|up & oy Dt\ m - B 1 1
au
ot (A N B (B25e)
U1 \Pe 0ot A®
oy 1%, 1 %m* 1f 1 1% e =
3 jup & Ep*oax o upf u? PL Ot Hp¥ at/"’
L - 2
2
3, -k
I s § 2 1 %), %0,
1
goo A
2
w2
L ot
1 2 Laplce_g+LE_\yw+—l—i—ai=
* ot A ot u, ¥ ot
up By u? PL oy 1
1™ 2
*
1 My (_@g_) =V.w(p_w)2 B 5 B A X (B25D)
O
peulHl* N.Pr,wayw Y1\Pe NPI':W @ fu ¥

Equaetions (B24) are for uj, hy, O, and ¢ as primery dependent
varisbles whereass equations (B25) are for uy, Hy, 6, and ¥ es
primary dependent varigbles.
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APPENDIX C

TRANSFORMATTON OF REDUCED DIFFERENTTIAIL EQUATIONS

TO CONICAL COORDINATE SYSTEM

The differential equations obtained in appendix B are to be trans-
formed from the x,y,t system to a conical cocordinate system §£,y,t where

£ = 5t

(c1)
y =¥ ?
t =1 )

This trensformation 1s arbitrerily restricted to conical firee-stream
flows (that is, all free-stresm quentities are functions of & alone)
t0 reduce the complexity of the equations while still retaining the
features that are necessary for application to flows generated by shock
waves and centered expension waves.

The following derivatives are equivalent:

ERCIUREC R

(?i)x ) (a_at)é i %)t(gtg)x ) (%)a i %(éa_e)t @)

In particular, for any free-stream function f£y(x,t) = £1(¢),

of '
1y - _L 1

3r,)

(c5)

4
\l._./
"
|
1
ct Juw
P‘IQ—I
H
'_I

and

Df uy \dfq - af
it - (T % + _é;)__i = (21 _.g)l 1 (c6)
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It should be noted that hl* is not a free-stream function for
hy = b(E,t); thus the derivatives of hj* become

bi¥) 3 - _ 1 fam 3y
32, - 2 - ) g SRRt bl
¢ (c7)
ahl*> 0 £ d _ oh, & Ohy, ¢ dhy
32), - e -w e TS YEE Tvm

Similar equations are applicable for Hp*.

Application of these equations to equation (B24ka) results in the
following relations:

* > 8% 38X
B 4 &&4.&11 _g)dul/__si_hl LY_*_A_)_l_aet T _ &t S g +
dt  |up de ulz(— age\e hy b Ve wu Ot u 3t
: ofd o |
achor 3 _ Sct bk 3 _ ufow (%) o set ()
u; 9 3t uy 8 O3 ul\p, o/, A B

B* 5 8% o/ ¥
£ °8 _ 8 °7l, x> wiow (f’_u_l) 0 (c9)
Yy u u &/ A

In snticipation of a Pohlhausen power series for the velocity profile,
let %f = £(A). Derivatives of %* msy then be expressed as derivatives

of A as follows:

> (c10)

1 o~
- |
~O 2
>
i}
o}
2
T
(..'.
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Equations (C9) and (ClO) are combined to give

R2() | & BX) | 2 1), BBk BTy ooxalf
3 u © wy 4t up \® hy b V8
*

okl d o
1Y% (a2 gax) 5% t %2 _ Ej’;gﬁga(”i>
up aa "3t ot o u; ot up\ee/ \ S /4

Substitution of equations (CLl) to (C7) into equation (B2hb) results
in the following equation:

t (c11)

3, Jidm 1 (i ahw)_ 1 9Py 8| ¢ dpy
Prhy A8y [yl dE

3% ~ Yu A& n*\aE o, T

d &
Lo hw_gdhl)JV_*_&é_(_d_h_l+_l_d_P.L)b6_*sY+aitJ_

t
hy 3t 3k de /1 ¢  uphi*\ d&  ppdE/ AP u 3t
> T 2 > B¥
8c€ ¢ g+ st v @b wx g _ YwfPw\” 1 %) g et 8t g
w, OF | u; B 3t  u; ¢ O d v @ uhi¥
U1 Uy v £ ul Pe/ Npr,w\B /w V uphy
(c12)
In anticipation of & power-serles representation of the local
enthalpy, the restriction is iIntroduced that v Y*—O\ ,I',b). The fol-
lowing equetions which are parallel to equations (ClQ) express the
derivatives of %—*:
7* 7* v* v*
d
°T) . ) Lo gfx) L, ST
ot ; A at oo \ot ¢
f (c13)
d ad 3y ¥ ¥ 3 ¥
_g] - _g(n ) s B[ _I
ot /¢ ON \ot ar Bg ob \0&/y
J
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The cambination of equations (Cl2) and (Cl3) gives

B, e, el B, 1(dh1_ahw) S o I
3¢ w @ w, d¢  m*\dE Ot/ pyhy G wyfephy Ak
L[S O dmpex ¢ (1 dp1 db)) sxy
AT 3t )| ¢ um*\epdar  ag) &8

3 ¥* 3 ¥ 3%
_]-___It_al_gg\_ +L_B__ta_r_ a_r+L__It@_§@ ¥
uy I 3t ot uy or ot ot/ u; ob ot ot

2 2 3 by

;_v*tgﬁ=2vw& L M7 gy L2t g c1h
up § Ot By \Pe) Wpr,w\B /v Vo uhm* ¢ (o)

In a similsar menner, the conlcal partial differential equations
in terms of O sand ¥ may be obtained from equdtions (B25) as

2
Ao R\ s 5 - 22
.
5% |
a &% . ,
1% Lo, L Lex, »2_ ) wien\? T e
y; A (Gat §3§> - Egl(pe) (TI)WA’C (c15)

3_"_2.(1_11:!_")+2\;2 _l_dﬁ+lﬁ_§>+i L iﬁ+_l_(§3&_ta&_gil>u:+
¥ %/ u

u dE  Hp*\de
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APPENDIX D

DERIVATION OF VELOCITY AND ENTHALPY BOUNDARY-IAYER

POWER-SERIES COEFFICIENTS, FORM PARAMETERS,

AND DISSIPATION FUNCTIONS

POWER~SERIES COEFFICIENTS

The coefficients for the velocity~profile power seriles may be
expressed in terms of Ao (coefficient of o) end the highest order
free-stream derivative. The values of A, are found by solving simul-
taneously equations (11) to (15) or (17) to (21) prescribing the boundary
conditions on the profile together with the profile equation itself
(eq. 8). This procedure yields: ' '

For the five-term series &%;

e b ) e
_ l 1
Az = =2 = Ay - E(L‘j—l) . (D1b)
o=
1]
Ay =1+ % Ay + %(1111—1) . (Dlc)
a=

For the six-term series &L:

1
1t
Al = 5 - %Aa - EJ-E(%>G;1 (DE&.)
1
Az = <5 - 3 Ay + &) (D2b)
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i(w
Ay =5 + Ay 5(u1>a,=1 (D2c)
3 1 1 e
= u
R =

A prime over a symbol represents differentietion with respect to the
argument of the function in question.

Local and stagnatlon enthalpy coefficients are obtailned simply by
replacing Ap in the preceding equatlons by B, and C,, respectively.

This substitution 1s permissible because the series expressions for local
and stagnation enthalpy and the appropriate stream boundary conditions

are identiceal in form to the corresponding velocity functions and boundary
conditions.

VEIOCITY FORM PARAMETERS
The displacement and momentum thlcknesses are defined, respectively,

by

f (D3)

After transformation to the incompressible normsl coordinate o through
the use of equation (5) and introduction of the requlrement that &i =1

for o 2 1, the relations (D3) become

* _ u 5% _ 1
o3 —AA (l '— ﬁ)d& or Z— —\/;) ( - q)da,

1

’ (Dk)
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Evaluation of these functilons then requires substitution of the correct
veloclty-profile coefficients into the general relation for ﬁui (eq. (8))

and substituting the latter into equation (D4). Results of this calcula~
tion for the five- and six~term velocity profiles are:

For the flve-term seriles uil—:

&% _ 2 _ A _1lfu (D5a)
A~ I0 T 120 40(“1)0[;1
"
u 1 2
8 -3 . A __R_E___”(ﬁ) =1 . 37 i) .19 (_u_)
A 315 T 945 T 9,072 9,072 3,’780(111 =1 22,680 \U1/ _,
(D5D)
For the six-term series l:
uy
LJ'_)"'
8% _1_ A, N\l
ATL T30 T T 2ko (Déa)
e
8 - 0.10101 - 0.00063131\ - 0.000031566A2 + 0.0000526A (—‘L) +
A u1 a=1
tne 1344 2
0.0016835 <l> - 0.0000260 [(#) ] (D6Db)
U Ja=1 1/a=1

The definition of A = -2A, has been utilized in these equations.
IOCAL ENTHAIPY FORM PARAMETERS

The quantity ¥ 1is defined as

_ T e, onx
vr = 0 Pe( hl*>d‘y (o7)
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After transformation to the incampressible normal coordinate B through

the use of equation (6) and introduction of the boundery condition %
1

for B2 1, the expression becomes

1 1
- - b* v - - BX)
T* = v j; ( hl*>dB or % ‘/; ( hl*>dB (D8)

The profile function of B (eg. (9)) and the coefficilents appropriate
to the term of the profile series are substituted into equation (D8) and

*
the following expressions for vz result:

v
For the five-term series E"—:
3 11
\7_*=_+Lr_l(u (09)
vV 107 &0 Bo\n %/
. h*
For the six~term series ﬁ':
1
v 1 1 1l (h¥* "
== T+ D10
vV L 120 211-0(1'11*) B=1 (p10)

The coefficlent Bo has been replaced by its equivalent T.

Next to be considered is the guantity ¢ which 1s defined by the

relation
o0
g=/ b";%( g)dy (p11)
The local enthalpy boundary condition that % 1 for B 21 must be

applied in conjunction with the veloecity boundary condition %_- =1 for

@2 1. It is apparent that the relative thickness of the velocity and

thermal boundery layers must be consldered in order to evaluste the
integral. For the case where the enthalpy thickness is equsl to or
greater than the velocity thickness, &y = 8y, the integral (Dll) becomes:

Sn
h e h*
dv + - m—ld
¢f peul( h1>y J;u 56( h1>y
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When this equation is transformed to the B-plane, it becomes

_ B(su) u h* 1 h*
¢ = vfo E(l - E*>dﬁ + va(Su) (1 - hl—*>dﬁ (D12)

The 1limit B(8,;) 1is evaluated from the relations (5) and (6), and the
following equation results:

8'l.l
B(5u) =%fo Lay=f=0 (p13)

e
Xe

e dy
The quantity b 1s equal to _QT_., end for &, S&,, b < 1.
o) -

dy
o Pe

When the veloclity thickness 1s considered to be equal to or greater
than the enthalpy thickness (b 2 1), the integral (D1l) can be written as

and 1s directly rediuced to

1
Yi=f (1 . B* \gg

since < K O for B = 1.
hy¥ =

Thus, the integral relstions for g; are dependent on whether the

quantity b is less than or greater than unity. These integrals may
be written

for b < 1:

b 1
%=fo ull.< -;11_*:)@ +L ( -%'*?)dﬁ (D1ka)

and for b = 1;

1
$=j0 uui( -%)da (D14b)
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Application of the five- snd six-term profile functions of =

T
1
and % to equations (D14) ylelds

1

For b g 1, five~term series:

B_3 3 ps2 2. 3 by Lopdaqfl B2 Bt W
v=io "ol TH P o "1 > * Mo "% ¥ &6 3,006 *

N (_ v ot b5)+h* " (_
Dy*¥Jg=1 \ 2,160 3,360 9,072 hy¥/a=1

n L
R R N GO

L _ 82,02 3 (&)" R B,
1‘[60 5 T2 280+540+u1m=1270 168 * 280 " 1,296, T

b2 B3 . p* bo
7\(1,080 " 8o 1,68 - 9,072)] (D152)

For b2 1, five-term series:

5

/l_\

n* \" (-l ;+_1_L-_1__1_)+(3_" (Li_é_i+i.l)+
(h1*>p=1 b 10 p3 LI32 ph ul) _\90 b " 5605 540 p¥

1+(_u_)" ( 1 i.. 1 l+ 1 1 +',\__]'__.]_'-.L._J.:.+
I,512 oF "\W/__,\1,080 b 1,680 > X%,536 {F) 1,080 b 840 p2

1’380 ;]'-3 = 9’072 %E)] (Dl5b)
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For

g -

v
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b £ 1, six~term series:

& - % + 0.11904TT02 = 0.0297619b% + 0.0138889b° - 0.0021644p° +

a\™ (_ b 2 n .5 6)
<ﬁi)a=l 3hg + 0-0039682b% ~ 0.00198k1b* + 0.0011574b7 - 0.0002164b° ) +

h* \ " ( L . 0.0019841b2 + 0,0014881b% - 0.0009259b5 + 0.0001804b6) +
(57 (@

"t 111

(g.) (%ﬁﬁ> (-0.000066136b2 + 0.000099206b* - 0,00007T161b7 +
L/ o=1\21 B=1

0.00001804b6> + %(536 - 0.0029762b2 + 0.0009921bu - O.OOO)-I-960b5 +

1ne
<p.00004960b2 - 0.00004961b% + 0.0000330Tb° -

0.0000812b6) + x(ﬁiﬁ)
p=1

1

0.0000067Tb0 ) + T |=2= - 0.0119048b2 + 0.014880963 - 0.0089286bY +
150

1311}
(-0.0003968b2 + 0,00074kob? -

a=1

5. 6, (1
0.002TTTTb? = 0.0003608b° + (ul)

0.0005952b* + 0.0002315b7 - o.oooo561b5) + x(o.oooz976b2 - 0.0004464b3 +

0.0002976b4 - 0.0000992b7 + 0.0000136b6)] (D16a)
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For b2 1, six-term series:

¢~ 0.1290477 L - 0.0297619 L + 0.0138889 L- - 0.c02164k L +
v B o b

I 5
s " ( 1 1 1 1
(ul> -=0.,0019841 g+ 0.0014881 =3 - 0.,0009259 ;E + 0.0001804 13) +

a~=1l

n* \" ( 1 1 1 1
0.0039682 = = 0,0019841 = + 0.,00115Th - 0.0002164 =
(E;)Bﬂ_ 5082 5 %0k b2 ¥ 2T jan ° b5> *

w\"™ (px\™ (_0.000066136 1 , 0.0010099206 1 1
(ul>a,—-l(ﬁ¥) B=1 5+ _ o3 0.00007T7161 "y +

0.0000180% L.} + A[0.005952% L - 0.00THs0k L + 0.004k643 L
] b be b3

ine
0.0013889 L + 0.000180% i) h¥ 0.00015841 £ - O, L
3889 =7 + =)+ 7\<h1* - 19841 & - 0.00037202 5 +

0.00029762 1 _0O. 0001157k

1, 0.00001803 1
b2 oF

1
b—5> + r[o.0059525 £ -

[11]

(-0.0000992 FUg
1 b

=,

1 1 1 u
0.0019842 — + 0.0009920 - 0.0001623 = + (%
98k = 099 o 3 = (ul)

0.0000992 & - 0.0000661 = + 0.0000135 -] + A (0.0002976 & -
b0 b b0 b

0.000kk6k L + 0.0002976 L - 0.0000992 L + 0.0000136 < (D16b)
b2 b3 oF ?
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TOTAL ENTHALPY FORM PARAMETERS

The quantities O% and V are defined, respectively, as

% =fo B%( - %)dy (p17e)
¥ =L 59_2 I;1—1-(1 - %)dy (D1Tb)

These definitions are transformed to the w~plane through use of equa-
tion (7). Because of the aimllerity between corresponding relstions for
the total enthslpy and local enthalpy, the equations for D*/U and V¥ /D
are identlcal to those for the local enthalpy thickness equations (D9),
(p10), (D15), and (D16) when V¥, (%, O, c, and Q are substituted
for ¢, v*, v, b, and T, respectively, and the stream boundary con-

1 n
* ne n
ditions (E—*) and (%) are replaced by (Ei— and (H—*— .
h1% g=1 hy¥/g=1 ) %/ o= H1 %/ =1
DISSIPATION FUNCTION

The dissipation function & 1is defined in eppendlx B and is given
by

2 u \}2
¢=£1_ﬂvﬁw_fl[ﬁ1_) @
p2 A 0 da
€

For the five- and six-term profiles, thils integral 1s evaluated as:

For the five-term series %:
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A )3 105 hoo 1,26 uy
13 ] 1 1" 2
158 U
o), ¢ Eb’[ﬁi)a:lJ (028)
For the six-term series u—u:‘L-:
2
S Py 125 5 5 L 3 _su\™ 1.2
Pt e A BT 168111)QF1 T,008 "~ *
€

e ]2 e
1 o _ 1 u
2,520 {ul)mﬂj 1,008 )\(ul)cwl (p19)
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APPENDIX E

DERIVATION OF COMPLETE BOUNDARY-IAYER EQUATIONS

FOR TWO-DIMENSICONAL UNSTEADY FLOW

The Prendtl boundary-layer equations (egs. (Bl) to (B4)) may be
rewritten with the aid of equation (B6) in slightly different form as

du du du 10p1 19 du

— —_ — = = = —— - — — El

at+uax+vay 5 5 +pay<uay) (E1)
.‘ft’:"

ég + o (pu) + o (pv) = 0 (E2)
ot ox dy

d d 2
§n+ua_h+v§a=;<ﬂ+u£;)+;_a_£8_h+ du (£3)
ot Ax dy P\ ot ox P dy\ep Ay P\dy

The "incompressible" normel ordinate Y is now introduced together
with a stream function § which satisfies the equation of continuity
(eq. (E2)). (A similar procedure was used in ref. 23.)

Y 1
Y= fo 2= olxy,t) &y (k)

’ (E5)

X,y

__ Pel (ot a_fyi
vETD (ax)y,t * <ét o Pe dy>
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The relstionships of the partial derivatives in the x,y,t system
to those in the x,Y,t system are:

&), 3,3),.
By X, BY X, t By
The stream function is then defined by

(&
5%/

)

> (E6)
SEERER-RE
M P (Bx Y’t * BY X,'t Bx y,t * Bt X,y

Transforming the equations of motion (egs. (E1l) and (E3)) to
x,Y,t coordinates with the aid of the preceding equations, employing
the Chapman-Rubesin viscosity-temperature relation (appendix B), and

considering the Prandtl number and specific heat to be constant results
in the following equetions:

2 3 3
% L awdf _udfy_ 1% e 3%
ST T BT OWT  Oxo | P x pl " ap (E7e)

Lofan _a¥om_ _(apl ¥ 5P1>

2
4_"1“1cw 1ah ae_ﬁ
at aYax dx 0Y P\t Y dx 2

Pe Npp aY2 37
(ETD)
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The boundary conditions to be satisfied are then

¥(x,0,t) = O
oY -
(&),
3T (E8)
(a—Y-)Y_,co= ul(x)t) F.
h(x,0,t) = hy
h(x,®,t) = hi(x,t) J

For the case of elther the shock wave or the rarefaction wave
propagating into air at rest in a uniform channel, the free-streem
quantities become functions only of the paremeter ¢ = E}Lt‘ The eque-

€
tions of motion may be wrltten in similarity form by using this conical
paremeter. After introduction of the identitiles:

¥ = vt af(tsn)
h = hea(t,q)
e=$ F (E9)
n = .
N
t =t
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the transformation equations from the x,Y,t coordinate system to the
E,n,t coordinate system are

-
(é_. = (5_) o1 .,.(_i (éﬂ) +(§_) = - E.(A.) -
at>x’Y ot n,t(at)x aﬂ)g,t dt/y VOt - t\OE ot
IR
2% \on - dt -
>(E10)
(_6_) - (.6_) (@é) - _l_(_a_)
ax t,Y Bg n’t Bx £ ae'b ag Tl’t
S - (& M) - ___J._(i
] <3Y)x,t (5n>g,t(5Y>t Vet aﬂ>§,t
> Equations (E7a) and (ETb) are then transformed to the &,n,t coor-

dinste system by using equations (E9) and (E10), the equation of state,

P = L ; 1 ph, and so forth; the following equations result

3 2 2 &
2t , [n, 3f\3F _of\dTr 1.1 %=
ElEle 37]3 +( + >n + |k on)omdt 7 g (E11)

_11 8
r- X = l(g - a—f>s (E12)
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with the boundary condltions

.
£(€,0) = 0
8.
a'f] n=0
(-g-i) = % = u (§) > (E13)
n-«
J B
g(¢,0) = e h,
g(t,) = oL = by (¢)
€
J
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AFPPENDIX F

DERIVATION OF INTEGRAL REIATTIONSHIPS AT A DISCONTINUITY

IN THE OUTER FREE-STREAM FIOW

In the outer inviscid flow, comsider an srbitrary dilscontinuity
which moves with a veloclty V¥ relative to the wall. The mass flux
through this discontinuity in an arbitrary distance L normal to the
wall, L >> 5, may be expressed in a coordinate system moving with a
veloclity V¥ as

L
(Mass flux)(peae)'l =J; pu¥* dy (F1)

The velocity relative to the dlscontinuity is u¥ = u - V¥ and the
bars denote nondimensionalization by the reference d.ensity and veloclty
(PeBe)- Equation (Fl) may be evalusted by substitution and use of the

definitions of 8% and V¥ +to give
-)(-

(Mass flux)(peae)_l = (_'1 i ;1— V- wy B+ () - V*)glf dy (F2)

The momentum flux mey likewise be expressed as

-1 L
(Momentum flux)(peaee) =f pg*a + —2 \ay (F3)
0\~ P8l
-] 2 h. ¥
(Momentum flux) (peaee) = 1;1_]_26 - 218*(51 - 22*) + (El - 1*) ﬁ V¥ +

I %\ 2 D3 i
1 - v + daf E'l[.

In a similar manner the energy flux into the discontinuilty may be
evaluated as

1 L 5
(Energy flux) (p€a€3)' =fo pu¥ ——=_ gy (¥5)
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2
8¢ 8

-1 h, ¥ 02 2hy
(Energy flux)(9€a€5) = - ""—'Hi¢ + 2 su v*e + ——-SV*( - V*) - _;§ % +

3
why |, (w - 7*) 3
S s M T
L In i
f 0, 12+( ) (2 -v*)dy (F6)
0] 8¢ =

where

I =fol[ - (ull-)}] da = I() @)

If the discontinuity is assumed to have zero thickness and to contain
nc sources or sinks, the entering flux must equal theat lesving since heat
transfer and wall shear heve zero length in which to influence the flow.
If the conditions on opposite sides of the discontinuilty are denoted as
stetes 1 and J, the following equalities must apply:

Massg:

_E)QEJ_*V*]_MQ _v_*)2 21 .
ug/ by Y 3 W/ eyuy
2
2 V* Py
opg?|(2 - 5+ it . (59)
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Energy:

*
D R A L
A Ty P1 - 3 g
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Figure 46.- Approximate distribution of heat-transfer parameter in a
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